高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理试题《动量守恒定律》考点预测(2017年强化版)(六)
2017-11-10 08:00:45 来源:91考试网 作者:www.91exam.org 【

1、计算题  如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m 一不带电的绝缘小球甲,以速度v0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞,已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/a2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1)甲、乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下,求甲的速度v0;
(3)若甲仍以速度v0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。


参考答案:

解:(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点的速度为vD,
乙离开D点到达水平轨道的时间为t,乙的落点到B点的距离为x,则


x=vDt ③
?联立①②③得x=0.4m ④
(2)设碰撞后甲、乙的速度分别为v甲、v乙
根据动量守恒定律和机械能守恒定律有mv0=mv甲+mv乙 ⑤
联立⑤⑥得v乙=v0⑦
由动能定理,得
联立①⑦⑧得
(3)设甲的质量为M,碰撞后甲、乙的速度分别为vM、vm,
根据动量守恒定律和机械能守恒定律有Mv0= MvM+ mvm⑩

联立⑩
和M≥m,可得v0≤vm< 2v0
设乙球过D点时的速度为vDˊ,由动能定理得

?联立⑨得2m/s≤vD"<8m/s
设乙在水平轨道上的落点距B点的距离为xˊ,有xˊ=vD"t
联立②得0.4m≤xˊ<1.6m。


本题解析:


本题难度:困难



2、选择题  如图12所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况?

A.甲球速度为零,乙球速度不为零
B.两球速度都不为零
C.乙球速度为零,甲球速度不为零
D.两球都以各自原来的速率反向运动


参考答案:AB


本题解析:首先根据两球动能相等,得出两球碰前动量大小之比为:,因m甲>m乙,则P甲>P乙,则系统的总动量方向向右。
根据动量守恒定律可以判断,碰后两球运动情况可能是A、B所述情况,而C、D情况是违背动量守恒的,故C、D情况是不可能的


本题难度:简单



3、简答题  两个分别具有动能E1=1MeV的氘核正面相碰,结果出现生成氦核(


32
He)的核反应,粒子和核的名称及它们的质量分别为:n:1.0087u,
11
H:1.0078u,
21
H:2.0141u,
32
He:3.0160u求出粒子的动能.


参考答案:核反应方程为:21H+21H→32He+10n,
设21H,32He,10n的质量分别为ml、m2、m3,反应后的总动能为E.
由能量守恒得2El+2mlc2=(m2+m3)c2+E则:
E=2El+(2m1+m2一m3)c2=2×1+(2×2.0141+3.0160-1.0087)×931=5.25MeV
在碰撞的过程中,动量守恒,可得
m2υ2=m3υ3,又E2En=12m2υ2212m3υ33=m2(m3m2υ3)2m3υ23=m3m2
上式中只有En,E2都未知,而En+E2=E,则合分比定理将上式变为
E2+EnEn=m2m2+m3
故放出粒子的动能En=m2m2+m3(E2+En)=m2m2+m3E=3.01603.0160.1.0087×5.25=3.9MeV.
答:粒子的动能为3.9MeV.


本题解析:


本题难度:一般



4、选择题  如图,两物体A、B用轻质弹簧相连,静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2使A、B同时由静止开始运动,在弹簧由原长伸到最长的过程中,对A、B两物体及弹簧组成的系统,正确的说法是(  )
A.A、B先作变加速运动,当F1、F2和弹力相等时,A、B的速度最大;之后,A、B作变减速运动,直至速度减到零
B.A、B作变减速运动速度减为零时,弹簧伸长最长,系统的机械能最大
C.A、B、弹簧组成的系统机械能在这一过程中是先增大后减小
D.因F1、F2等值反向,故A、B、弹簧组成的系统的动量守恒




参考答案:A、在拉力作用下,A、B开始做加速运动,弹簧伸长,弹簧弹力变大,物体A、B受到的合力变小,物体加速度变小,物体做加速度减小的加速运动,当弹簧弹力等于拉力时物体受到的合力为零,速度达到最大,之后弹簧弹力大于拉力,两物体减速运动,直到速度为零时,弹簧伸长量达最大,因此A、B先作变加速运动,当F1、F2和弹力相等时,A、B的速度最大;之后,A、B作变减速运动,直至速度减到零,故A正确;
B、在整个过程中,拉力一直对系统做正功,系统机械能增加,A、B作变减速运动速度减为零时,弹簧伸长最长,系统的机械能最,故B正确,C错误;
D、因F1、F2等大反向,故A、B、弹簧组成的系统所受合外力为零,系统动量守恒,故D正确;
故选ABD.


本题解析:


本题难度:简单



5、简答题  一个质量为M的雪橇静止在水平雪地上,一条质量为m的爱斯基摩狗站在该雪橇上.狗向雪橇的正后方跳下,随后又追赶并向前跳上雪橇;其后狗又反复地跳下、追赶并跳上雪橇.狗与雪橇始终沿一条直线运动.若狗跳离雪橇时雪橇的速度为v,则此时狗相对于地面的速度为v+u(其中u为狗相对于雪橇的速度,v+u为代数和,若以雪橇运动的方向为正方向,则v为正值,u为负值).设狗总以速度v追赶和跳上雪橇,雪橇与雪地间的摩擦忽略不计.已知v的大小为5 m/s,u的大小为4 m/s,M="30" kg,m="10" kg.求:
(1)狗第一次跳上雪橇后两者的共同速度的大小;
(2)雪橇的最终速度和狗最多能跳上雪橇的次数.
(供使用但不一定用到的对数值:lg2=0.301,lg3=0.477)


参考答案:(1)2 m/s?(2)5.625 m/s


本题解析:(1)设雪橇运动的方向为正方向,狗第1次跳下雪橇后雪橇的速度为v1,根据动量守恒定律,有Mv1+m(v1+u)=0
狗第1次跳上雪橇时,雪橇与狗的共同速度为v1′满足Mv1+mv=(M+m)v1′
可解得? v1′=
将u="-4" m/s,v="5" m/s,M="30" kg,m="10" kg代入,得v1′="2" m/s.
(2)设雪橇运动的方向为正方向,狗第i次跳下雪橇后,雪橇的速度为vi,狗的速度为vi+u;狗第i次跳上雪橇后,雪橇和狗的共同速度为vi′,由动量守恒定律可得
第一次跳下雪橇:
Mv1+m(v1+u)=0
v1=-="1" m/s
第一次跳上雪橇:
Mv1+mv=(M+m)vi′
第二次跳下雪橇:
(M+m)vi′=Mv2+m(v2+u),v2′=
第三次跳下雪橇:
(M+m)v2′=Mv3+m(v3+u),v3=
第四次跳下雪橇:
(M+m)v3′=Mv4+m(v4+u)
v4=="5.625" m/s.
此时雪橇的速度已大于狗追赶的速度,狗将不可能追上雪橇.因此狗最多能跳上雪橇3次,雪橇最终的速度大小为5.625 m/s.


本题难度:简单



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理试题《原子的核式结构》..

网站客服QQ: 960335752 - 14613519 - 791315772