1、选择题  如图甲所示,水平面上质量相等的两木块A、B用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图乙所示.研究从力F刚作用在木块A的瞬间到木块B刚离开地面的瞬间的这个过程,并且选定这个过程中木块A的起始位置为坐标原点,则下列图象中可以表示力F和木块A的位移x之间关系的是( ?)


 
	参考答案:A
	本题解析:设弹簧的劲度系数为,A、B的质量为m,A的加速度大小为a,由题知整个系统处于平衡状态,此时弹簧的压缩量 满足:
满足: ?①
?①
当木块在平衡位置以下时,由牛顿第二定律可知: ?②
?②
由①②式得:F=kx+ma?③
当木块在平衡位置以上时,由牛顿第二定律可知: ?④
?④
由①④式得:F=kx+ma?⑤
由③⑤式可以看出力和木块的位移成一次函数关系,应选A
	本题难度:一般
	        2、计算题  一根劲度系数为k、质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示。现让木板由静止开始以加速度a(a<g)匀加速向下移动。求经过多长时间木板开始与物体分离。 

 
	参考答案:解:设物体与平板一起向下运动的距离为x时,物体受重力mg、弹簧的弹力F=kx和平板的支持力N作用
据牛顿第二定律有:mg-kx-N=ma,得:N=mg-kx-ma
当N=0时,物体与平板分离,所以此时
因为 ,所以
,所以
	本题解析:
	本题难度:一般
	        3、选择题  质量为2×103 kg的汽车,保持发动机输出功率为30×103 W不变,在水平公路上能达到的最大速度为15 m/s,当汽车的速度为10 m/s时,其加速度为多少?
 
	参考答案:0.5 m/s2
	本题解析:汽车速度最大时,受力平衡,即牵引力等于阻力,所以 ,可求得阻力为2000N,当汽车的速度为10 m/s时,牵引力为3000N,根据牛顿第二定律可得
,可求得阻力为2000N,当汽车的速度为10 m/s时,牵引力为3000N,根据牛顿第二定律可得 ,计算可知加速度为0.5 m/s2,
,计算可知加速度为0.5 m/s2,
故答案为:0.5 m /s2
	本题难度:简单
	        4、填空题  用6N水平拉力拉质量为2kg的物体,沿水平桌面匀速运动,若水平力改为10N,则物体的加速度大小为?m/s2。动摩擦因数为?(g=10m/s2)
 
	参考答案:2? ,? 0.3
	本题解析:物体做匀速直线运动时,有: .则
.则 .
.
根据牛顿第二定律得, .
.
点评:根据物块做匀速直线运动,求出摩擦力的大小,从而求出物体与水平面的动摩擦因数.根据牛顿第二定律求出水平力为10N时的加速度.
	本题难度:简单
	        5、计算题  如图所示,正面朝下的斜面与水平面夹角θ=37o,滑块质量m=1kg,滑块与斜面间的动摩擦因数μ=0.5,一个F=20N的水平推力作用在滑块上,滑块紧贴斜面加速下滑。试求:

小题1:以质点表示滑块画出它的受力示意图;
小题2:求斜面对物块的弹力大小;
小题3:求物块所受的合力?(sin37o=0.6,cos37o=0.8,g=10N/kg)
 
	参考答案:
小题1:

小题2:FN =4N
小题3:20N
	本题解析:(1)如右图6所示,3分。出现多、漏、错力就不给分,可以不标字母。
(2)对物块,其受力正交分解如图所示 …………1分

Fy合= Fy-FN-Gy =" 0" …………1分
即F·sinθ-FN-G·cosθ="0" …………2分
代入数据,解得FN ="4N" …………2分
(3)F合= Fx合= Fx + Gx-f…………1分
即 F合=F·cosθ+ G·sinθ-μFN…………2分
代入数据,解得F合="20N" …………1分
物块所受合力的方向沿斜面向下…………1分
	本题难度:简单