1、选择题 关于
向心力的说法中正确的是
[? ]
A.
物体做圆周运动需要向心力
B.向心力是指向圆心方向的合力,是根据力的作用效果命名的
C
.
向
心
力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某一种力的分力
D
.向
心力只改变物体运动的方
向,不可能
改变物体运动的快慢
参考答案:ABCD
本题解析:
本题难度:简单
2、简答题 伴随着神舟系列载人飞船的陆续升空,“嫦娥一号”探月成功发射,我国作为航天大国,其实力不断增强,万有引力与航天问题也成为百性关注的热点话题.若已知万有引力常量G,地球半径R,地球和月亮之间的距离r,同步卫星距地面的高度h,月球绕地球运转的周期T1,地球的自转的周期T2,地球表面的重力加速度g.小霞同学根据以上条件,提出一种估算地球质量M的方法:她认为同步卫星绕地心作圆周运动,由于卫星距地面较高,则地球半径可忽略不计,然后进行估算,由G
=mh()2可得M=4π2h3 G. (1)请你判断一下小霞同学的计算方法和结果是否正确,并说明理由.如不正确,请给出正确的解法和结果. (2)请根据已知条件能否探究出两种估算地球质量的方法并解得结果.
参考答案:解(1)小霞同学的计算方法和结果都是不正确的.因为地球半径R在计算过程中不能忽略. 正确的解法和结果为: GMm(R+h)2=m(2πT2)2(R+h) 解得:M=4π2(R+h)3GT22 (2)利用万有引力与圆周运动向心力和重力的关系有: 方法一:万有引力提供月球绕地作圆周运动的向心力, 因此有GMmr2=m(2πT1)2r, 故有M=4π2r3GT21 方法二:在地球表面重力近似等于万有引力: GMmR2=mg, 故有M=gR2G 答:(1)小霞同学的计算方法和结果都是不正确的.因为地球半径R在计算过程中不能忽略.正确的解法和结果如上所述. (2)根据已知条件,还有两种估算地球质量的方法,其方法和结果如上所述.
本题解析:
本题难度:一般
3、简答题 如图所示,圆心在O点,半径为R=0.24m的圆弧形支架abc竖直固定在水平桌面上,支架最低点a与桌面相切,最高点c与O点的连线Oc与Oa夹角为60°.一轻绳两端系着质量分别为m1和m2的小球A和B(均可视为质点),挂在圆弧边缘c的两边.开始时,A、B均静止,A的位置与c点等高,不计一切摩擦,连线和水平桌面足够长,g=10m/s2. (1)为使A能沿圆弧下滑到a点,m1与m2之间必须满足什么关系? (2)若m1=3m2,求A到达圆弧最低点a时,A的速度大小. (3)若m1=3m2,求B能上升的最大高度.
参考答案:(1)A、B两球组成的系统机械能守恒,有: m1gR(1-cos60°)=m2gR 解得m1=2m2. (2)若m1=3m2,设A滑动最低点a时的速度为vA,B的速度为vB. vB=vAcos30° 根据系统机械能守恒定律得, m1gR(1-cos60°)-m2gR=12m1vA2+12m2vB2 解得vA=0.8m/s. (3)当A的速度减为零,B上升的高度最高. 根据系统机械能守恒定律得, m1gR(1-cos60°)=m2gh 解得h=3R2=0.36m. 答:(1)为使A能沿圆弧下滑到a点,m1与m2之间必须满足m1=2m2. (2)A的速度大小为0.8m/s. (3)B能上升的最大高度为0.36m.
本题解析:
本题难度:一般
4、选择题 质量不计的轻质弹性杆P部分插入桌面上小孔中,杆另一端套有质量为m的小球,今使小球在水平面内做半径为R、角速度为ω的匀速圆周运动,如图所示,则杆的上端受到球对它的作用力大小为( ) A.nω2Rω B.mg C.mg+mω2R D.m 
参考答案:小球所受的合力提供向心力,有:F合=mRω2,根据平行四边形定则得,杆子对小球的作用力F=
本题解析:
本题难度:简单
5、选择题 如图所示,玻璃试管内壁光滑、长为L,试管底部有一质量为m,电荷量为-q的小球(视为质点).匀强磁场方向竖直向下,磁感应强度为B.现让试管绕通过开口端的竖直轴以角速度ω在水平面内沿逆时针方向做匀速圆周运动,则试管底部所受压力大小等于( ) A.0 B.mLω2 C.mLω2+qBLω D.mLω2-qBLω
|

参考答案:以小球为研究对象,在水平面内小球受到洛伦兹力和试管底部的支持力,由左手定则判断可知,洛伦兹力沿半径向外,根据牛顿第二定律得:
N-qBLω=mω2L
解得:N=mω2L+qBLω
根据牛顿第三定律得,试管底部所受压力大小N′=N=mω2L+qBLω.
故选C
本题解析:
本题难度:简单