1、计算题 如图所示的直角坐标系中,在直线x=-2l0到y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向。在电场左边界上A(-2l0,- l0)到C(-2l0,0)区域内,连续分布着电荷量为+q、质量为m的粒子。从某时刻起由A点到C点间的粒子,依次连续以相同的速度v0沿x轴正方向射入电场。若从A点射入的粒子,恰好从y轴上的A′(0,l0)沿x轴正方向射出电场,其轨迹如图虚线所示。不计粒子的重力及它们间的相互作用。求

(1)粒子从A点到A′的时间t;
(2) 匀强电场的电场强度E;
(3)在AC间还有哪些位置的粒子,通过电场后也能沿x轴正方向运动?
参考答案:(1)T=
;(2)E=
;(3)AC间坐标为y=-
l0 (n=1,2,3…)的点通过电场后也能沿x轴正方向运动
本题解析:
试题分析: (1)从A′点射出的粒子,由A到A′的运动时间为T,粒子x轴方向匀速直线运动
2l0=v0T,?解得T=
?
(2)由运动的对称性知?
?解得:E=
(3)设到C点距离为Δy处射出的粒子通过电场后也沿x轴正方向运动,粒子第一次到达x轴用时为Δt,水平位移为Δx。
则Δx=v0Δt?
若满足2l0=n·2Δx(n=1,2,3…),则粒子从电场射出时的速度方向也将沿x轴正方向运动(如图所示)。

解得:Δy=
l0(n=1,2,3…)
即AC间坐标为y=-
l0 (n=1,2,3…)的点通过电场后也能沿x轴正方向运动。
本题难度:一般
2、计算题 两平行金属板A、B水平放置,一个质量为m=5×10-6kg的带电微粒以v0=2m/s的水平速度从两板正中位置射入电场,如图所示,A、B 间距为d=4cm,板长L= 10cm. (g取10m/s2)
(1)当A、B间电压UAB=1.0×103V时,微粒恰好不发生偏转,求该微粒的电性和电荷量;
(2)令B板接地,要使该微粒能穿过电场,求A板的电势。
参考答案:(1)
?负电?(2) -600V≤φ≤2600V
本题解析:(1)
V/m?(1分)
根据题意,可知该微粒带负电,有 qE =" mg"
C?(2分)
(2)微粒刚好从B板右端射出时
运动时间
?(1分)?竖直位移?
?(1分)
解得?加速度a1=16m/s2?(1分)
设A板电势为φ1时,由加速度?
?(1分)
解得
V?(1分)
当微粒刚好从A板右端射出时,设A板电势为φ2,同理有
运动时间
?竖直位移?
?
解得 a2=16m/s2
而
?(1分)
V?(1分)
则要使微粒从两板间飞出,A板的电势φ的取值为:-600V≤φ≤2600V
点评:本题第一问微粒恰好不发生偏转,说明微粒受的重力和电场力是平衡力,第二问考查学生的发散思维,要讨论微粒恰好从A板射出,或微粒恰好从B板射出分别进行计算。
本题难度:一般
3、计算题 如图甲所示,边长为L的正方形区域ABCD内有竖直向下的匀强电场,电场强度为E,与区域边界BC相距L处竖直放置足够大的荧光屏,荧光屏与AB延长线交于O点。现有一质量为m,电荷量为+q的粒子从A点沿AB方向以一定的初速进入电场,恰好从BC边的中点P飞出,不计粒子重力。

(1)求粒子进入电场前的初速度的大小?
(2)其他条件不变,增大电场强度使粒子恰好能从CD边的中点Q飞出,求粒子从Q点飞出时的动能?
(3)现将电场(场强为E)分成AEFD和EBCF相同的两部分,并将EBCF向右平移一段距离x(x≤L),如图乙所示。设粒子打在荧光屏上位置与0点相距y,请求出y与x的关系?
参考答案:(1)
(2)
(3)
本题解析:(1)粒子在电场中做类平抛运动,则水平方向:
;竖直方向:
,解得
(2)其他条件不变,增大电场强度使粒子恰好能从CD边的中点Q飞出,则
;
,解得E’=8E;从A到Q由动能定理可得:
,解得
(3)在ADEF中:
;
粒子出射方向与水平方向的夹角:
,而
,所以
在EFCB中,出射速度与甲相同,则
;
,所以y3=L-x
则
?
本题难度:一般
4、计算题 如图所示,质量为m带电量为+q的带电粒子(不计重力),从左极板处由静止开始经电压为U的加速电场加速后,经小孔O1进入宽为L的场区,再经宽为L的无场区打到荧光屏上。O2是荧光屏的中心,连线O1O2与荧光屏垂直。第一次在宽为L整个区域加入电场强度大小为E、方向垂直O1O2竖直向下的匀强电场;第二次在宽为L区域加入宽度均为L的匀强磁场,磁感应强度大小相同、方向垂直纸面且相反。两种情况下带电粒子打到荧光屏的同一点。求:

(1)带电粒子刚出小孔O1时的速度大小;
(2)加匀强电场时,带电粒子打到荧光屏上的点到O2的距离d;
(3)左右两部分磁场的方向和磁感应强度B的大小。
参考答案:(1)
(2)(3)B = (
本题解析:(1)带电粒子在加速电场中加速过程,由动能定理得;
?①? 2分
解得:
? 1分

(2)带电粒子在偏转电场中,设运动时间为t,加速度为a,平行电场的分速度为vy,侧移距离为y。
由牛顿第二定律得:qE = ma ②?1分
由运动学公式得:L = v0t?③? 1分
vy = at?④? 1分
由②③④得:
?⑤? 1分
带电粒子从离开电场到打到荧光屏上的过程中,设运动时间为t′,侧移距离为y′.
由运动学公式得:= v0t′⑥? 1分
由③④⑥得:y′ = vyt′?⑦? 1分
由⑤⑦得带电粒子打到荧光屏上的点到O2的距离:d = y + y′= ?1分
(3)磁场的方向如图所示,左半部分垂直纸面向外,右半部分垂直纸面向里。 ?1分

带电粒子运动轨迹与场区中心线交于N点,经N点做场区左边界的垂线交于M点,经N点做过N点速度的垂线交场区左边界于O点,O点就是带电粒子在左半区域磁场中做圆周运动的圆心。带电粒子在两部分磁场中的运动对称,出磁场的速度与荧光屏垂直,所以O1M = 。(意思明确即可)? 2分
设带电粒子做圆周运动的半径为R,由几何关系得:
?⑧?2分
由牛顿第二定律得:
?⑨? 1分
由v0、d的结论和⑧⑨式解得:
B = ()(未代入原始数据不得分)? 2分
点评:注意类平抛运动过程水平方向的运动与竖直方向的运动具有等时性,然后分别应用匀速运动规律和初速度为零匀加速直线运动规律解题.
本题难度:一般
5、选择题 如图所示,在两块带电平行金属板间,有一束电子沿Ox轴方向射入电场,在电场中的运动轨迹为OCD。已知2OA=AB,则电子在OC段和CD段动能的增加量之比△EkC:△EkD为

[? ]
A、1:2
B、1:3
C、1:8
D、1:9
参考答案:C
本题解析:
本题难度:一般