1、选择题 宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量相等的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为R,并绕其中心O做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G,以下对该三星系统的说法正确的是? ( ).

A.每颗星球做圆周运动的半径都等于R
B.每颗星球做圆周运动的加速度与三颗星球的质量无关
C.每颗星球做圆周运动的周期为T=2πR
D.每颗星球做圆周运动的线速度v=2
参考答案:C
本题解析:三颗星球均绕中心做圆周运动,由几何关系可知r=
=
R,A错误;任一星球做圆周运动的向心力由其他两个星球的引力的合力提供,根据平行四边形定则得F=2
cos 30°=ma,解得a=
,B错误;由F=2
cos 30°=m
=m
r得C正确,D错误.
本题难度:一般
2、选择题 一颗人造卫星以地心为圆心做匀速圆周运动,它的速率、周期跟它的轨道半径的关系( ?)
A.半径越大,速率越小,周期越大
B.半径越大,速率越大,周期越大
C.半径越大,速率越小,周期越小
D.半径越大,速率越小,周期不变
参考答案:A
本题解析:由
知半径越大,速率越小,B错;由
知半径越大,周期越大A对,CD错。
本题难度:一般
3、选择题 人造地球卫星在圆形轨道上环绕地球运行时(?)
A.轨道半径越大,速度越小,周期越长
B.轨道半径越大,速度越大,周期越短
C.轨道半径越大,速度越大,周期越长
D.轨道半径越小,速度越小,周期越长
参考答案:A
本题解析:由公式
得
,所以轨道半径越大,则速度越小,由公式
得
,所以轨道半径越大,周期越长,所以选A
考点:万有引力定律的应用
点评:一个天体绕中心天体做圆周运动时万有引力提供向心力,灵活的选择向心力的表达式是我们顺利解决此类题目的基础.我们要按照不同的要求选择不同的公式来进行求解
本题难度:简单
4、计算题 已知地球半径为R,一只静止在赤道上空的热气球(不计气球离地高度)绕地心运动的角速度为ω0,在距地面h高处圆形轨道上有一颗人造地球卫星,设热气球的质量为m,人造地球卫星的质量为m1 ,而地球质量M和万有引力常量G未知。根据上述条件,有一位同学列出了以下两个式子:
对热气球有:GmM/R 2=mω02R ?
对人造卫星有:Gm1M/(R+h)2=m1ω2(R+h)
进而求出了人造地球卫星绕地球运行的角速度ω.你认为该同学的解法是否正确?若认为正确,请求出结果;若认为错误,请说明理由,并补充一个条件后,再求出ω.
参考答案:错误
本题解析:错误,热气球受到浮力和重力共同作用而处于静止。
方法(1):设地球表面物体重力加速度g:
?
Gm1M/(R+h)2=m1ω2(R+h)
解得:
(或
)
方法(2):设第一宇宙速度v1:
?
Gm1M/(R+h)2=m1ω2(R+h)
解得:
本题考查天体运动知识,热气球受到浮力和重力共同作用而处于静止,不是重力完全充当向心力,所以不能用GmM/R 2=mω02R
本题难度:一般
5、选择题 某行星的质量是地球的6.4倍,其表面重力加速度是地球表面重力加速度的1.6倍,则该行星的半径与地球的半径之比为( )
A.1:1
B.1:2
C.2:I
D.4:1
参考答案:设任一星球的质量为M,半径为R,质量为m的物体在星球表面时,星球对物体的万有引力近似等于物体的重力,则有
? mg=GMmR2
得g=GMR2
所以R=
本题解析:
本题难度:一般