高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理题《动能定理及应用》高频考点预测(2019年最新版)(四)
2019-07-03 00:32:05 【

1、计算题  (8分)如图所示,位于竖直平面上的1/4圆弧轨道AB光滑无摩擦,半径为R,O点为圆心,A点距地面高度为H.质量为m的小球从A点由静止释放,通过B点后落在地面C处.不计空气阻力,求:

(1)小球通过B点的速度以及在B点受到轨道的支持力F;
(2)小球落地点C与B点的水平距离s;


参考答案:(1)v=? F=3mg? ( 2 )s=2


本题解析:(1)对小球从A到B由动能定理得:?解得v=
对小球在B点受力分析得:,把速度代入解得 F=3mg。
( 2 )小球从B到C做平抛运动得:?,??,v=
联立以上各式解得s=2
点评:学生能熟练运用动能定理,向心力公式,平抛运动的规律求解问题。


本题难度:一般



2、简答题  如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计粒子所受重力).
(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置;
(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置;
(3)若将左侧电场II整体水平向右移动L/4,仍使电子从ABCD区域左下角D处离开(D不随电场移动),在电场I区域内由静止释放电子的所有位置.


参考答案:(1)设电子的质量为m,电量为e,在电场I中释放后将做出速度为零的匀加速直线运动,出区域I时的速度为vo,接着进入电场II做类平抛运动,假设电子从CD边射出,出射点纵坐标为y,对电子的整个运动过程运用动能定理和匀变速直线运动公式有:eEL=12mv2,
在电场Ⅱ区域内的偏转,L=vt,y1=12at2=eE2m?L2v2=14L,方向向下,
故:y=L2-y1=L4
所以位置坐标(-2L,14L)
(2)设释放位置坐标为(x,y),在电场I中电子被加速到v1,然后进入电场II做类平抛运动,并从D点离开,有:eEx=12mv2,
L=vt,y?=12at2=eE2m?L2v2=L24x,所以满足xy=L24方程的点即为释放点的位置
(3)设释放位置坐标为(x,y),eEx=12mv2,在电场I中加速到v2,进入电场II后做类平抛运动,在高度为y′处离开电场II时的情景与(2)中类似,然后电子做匀速直线运动,经过D点,则有:
L=vt1,L4=vt2,
y2=12at21=eE2m?L2v2=L24x,
y3=at1t2=eEm?Lv?L4v=eEL24mv2=L28x,
y=y2+y3=L24x+L28x=3L28x,
所以满足y=3L28x方程的点即为释放点的位置.
答:(1)在该区域AB边的中点处由静止释放电子,电子从(-2L,14L)离开ABCD区域.
(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,所有释放点为满足xy=L24的位置.
(3)若将左侧电场II整体水平向右移动在电场I区域内由静止释放电子的所有位置,在电场I区域内由静止释放电子的所有位置为y=3L28x.


本题解析:


本题难度:一般



3、简答题  一场精彩的足球赛,经过激烈鏖战终未分出胜负,最后进入点球大战.罚点球时,有一运动员飞起一脚将球踢飞,恰好击中横梁,守门员估计打在横梁上的足球速度约为v.?已知足球的质量为m,球门横梁的高度为h,罚球点到球门线的水平距离为L,重力加速度为g,空气阻力不计.求:
(1)足球被踢出时的速度约为多大?
(2)运动员踢球时对球所做的功约为多少?


参考答案:(1)足球从被踢出到打在横梁上的过程中,由机械能守恒定律得:
? 12mv20=12mv2+mgh
解之得:足球被踢出时的速度?v0=


本题解析:


本题难度:一般



4、计算题  如图所示,平行金属板长为L,一个带电为+q质量为m的粒子以初速度v0紧贴上板垂直射入电场,刚好从下板边缘射出,末速度恰与下板成60°角,粒子重力不计,求:

(1)粒子末速度大小 (2)电场强度 (3)两极板间距离?


参考答案:(1) ;(2);(3)


本题解析:
试题分析:(1)粒子在电场中做类平抛运动,将末速度分解如图所示

由几何关系知:=cos600,解得:
(2)粒子在电场中做类平抛运动,依题知,粒子在电场中的运动时间:t=
粒子离开电场时,垂直板方向的分速度:v1=v0tan60°,竖直方向加速度:a=
粒子从射入电场到离开电场,有v1= at=t
联立以上各式得
(3) 粒子从射入电场到离开电场,由动能定理,有qEy=-,解得


本题难度:一般



5、计算题  如图所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别为μ1、μ2,开始时二者均静止,现瞬间使物体A获得一向右的水平速度v0,以后物体A在与盒B的左右壁碰撞时,B始终向右运动,当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离x后也停止运动,求盒B运动的时间t。


参考答案:解:以物体A、盒B组成的系统为研究对象,它在水平方向所受的外力就是地面对盒B的滑动摩擦力,而A与B间的摩擦力、A与B碰撞时的相互作用力均是内力
设B停止运动时A的速度为v,且假定向右为正方向,对由物体A和盒B组成的系统应用动量定理得:
-μ2(m+M)gt=mv-mv0 ①
当B停止运动后,对A应用动能定理得:
由①②两式解得B运动的时间为:


本题解析:


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高中物理知识点复习《楞次定律》..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询