1、计算题 ?如图所示的空间分为I、II、III三个区域,各竖直边界面相互平行,I、II区域均存在电场强度为E的匀强电场,方向垂直界面向右;同时II区域存在垂直纸面向外的匀强磁场;III区域空间有一与FD边界成450角的匀强磁场,磁感应强度大小为B,其下边界为水平线DH,右边界是GH:一质量为、电荷量为q的带正电的粒子(重力不计)从O点由静止释放,到达A点时速度为v0,粒子在C点沿着区域III的磁感线方向进人III区域,在DH上的M点反弹,反弹前、后速度大小不变,方向与过碰撞点的竖直线对称,已知粒子在III区域内垂直于磁场方向的平面内做匀速圆周运动的轨道半径为r=
,C点与M点的距离为
,M点到右边界GH的垂直距离为
。求:
(1)粒子由O点运动到A点的时间t1=?
(2) A与C间的电势差UAC=?
(3)粒子在III区域磁场内运动的时间t2=?

2、选择题 (19分)如图甲所示,虚线MN上方存在垂直纸面向里的匀强磁场,MN下方存在竖直向下的匀强磁场,两处磁场磁感应强度大小相等。相距L=1.5 m的足够长的金属导轨竖直放置,导轨电阻不计。质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,金属棒的电阻Rab=Rcd=0.9Ω,ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75。现由静止释放cd棒,同时ab棒受方向竖直向上,大小按图乙所示变化的外力F作用而运动,经研究证明ab棒做初速度为零的匀加速运动,g取10m/s2。
(1)求磁感应强度B的大小和ab棒加速度的大小;
(2)已知在前2s内外力F做功为40J,求这一过程中两金属棒产生的总焦耳热;
(3)求cd棒达到最大速度所需的时间t0。
3、简答题 (17分)
如图所示,在x轴上方有水平向左的匀强电场,电场强度为E1;下方有竖直向上的匀强电场,电场强度为E2,且
。在x轴下方的虚线(虚线与茗轴成45°角)右侧有垂直纸面向外的匀强磁场,磁感应强度为B。有一长为L的轻绳一端固定在第一象限内的O′点,且可绕O′点在竖直平面内转动;另一端拴有一质量为m的小球,小球带电量为+q。OO′与x轴成45°角,其长度也为L。先将小球放在O′点正上方,从绳恰好绷直处由静止释放,小球刚进人有磁场的区域时将绳子断开。
试求:
(1)绳子第一次刚拉直还没有开始绷紧时小球的速度大小;
(2)小球刚进入有磁场的区域时的速度大小;
(3)小球从进入有磁场的区域到第一次打在x轴上经过的时间。
4、计算题 如图所示,在直角坐标系xoy的第一、四象限区域内存在两个有界的匀强磁场:垂直纸面向外的匀强磁场I以及匀强磁场Ⅱ,O、M、P、Q为磁场边界和x轴的交点,MP区域是真空的,OM=MP=L。在第二象限存在沿x轴正向的匀强电场.一质量为m带电量为+q的带电粒子从电场中坐标为(-L,O)的点以速度v0沿+y方向射出,从y轴上坐标(O,2L) 的C处射入区域I,并且沿x的正方向射出区域I,带电粒子经过匀强磁场Ⅱ后第二次经过y,轴时就回到C点(粒子的重力忽略不计).求:
(1)第二象限匀强电场场强E的大小;
(2)区域I内匀强磁场磁感应强度B的大小;
(3)问区域Ⅱ内磁场的宽度至少为多少?
(4)粒子两次经过C的时间间隔为多少?
(5)请你通过对粒子运动轨迹描述定性判断:带电粒子能否通过坐标为(L,10L)的点.

5、计算题 如图所示,在xOy平面内有一范围足够大的匀强电场,电场强度大小为E,电场方向在图中未画出.在y≤l的区域内有磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面向里.一电荷量为+q、质量为m的粒子,从O点由静止释放,运动到磁场边界P点时的速度刚好为零,P点坐标为(l,l),不计粒子所受重力.

(1)求从O到P的过程中电场力对带电粒子做的功,并判断匀强电场的方向.
(2)若该粒子在O点以沿OP方向、大小
的初速度开始运动,并从P点离开磁场,此过程中运动到离过OP的直线最远位置时的加速度大小
,则此点离OP直线的距离是多少?
(3)若有另一电荷量为-q、质量为m的粒子能从O点匀速穿出磁场,设
,求该粒子离开磁场后到达y轴时的位置坐标.