1、单选题 若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625
B: 841
C: 1024
D: 1369
参考答案: B
本题解释:【答案】B。解析:根据方阵公式:最外层人数=4×最外层每边人数﹣4可知:由外到内第二层每排的学生数=(104+4)÷4=27个;最外一层每排有学生=27+2=27+2=29个;所以该方阵共有学生:29×29=841个,故正确答案为B。
2、单选题 一副扑克牌有52张,最上面一张是红桃A。如果每次把最上面的10张移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃A会出现在最上面?_____
A: 27
B: 26
C: 25
D: 24
参考答案: B
本题解释:正确答案是B考点倍数约数问题解析每次移动扑克牌张数为10,因此移动的扑克牌总数必然是10的倍数;又红桃A从再最上面再回到最上面,则移动的扑克牌总数必然是52的倍数。10与52的最小公倍数是260,也即移动扑克牌数达到260后红桃A再次出现在最上面。移动次数为260÷10=26次,故正确答案为B。标签最小公倍数
3、单选题 某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长_____米。
A: 360
B: 400
C: 450
D: 500
参考答案: B
本题解释:B【解析】8千米/小时=(400/3)米/分,12千米/小时=200米/分,设队伍长χ米,则χ÷(200-400/3)+χ÷(200+400/3)=7.2,解得χ=400。
4、单选题 新上任的库房管理员拿着20把钥匙去开20个库房的门,他只知道每把钥匙只能打开其中的一扇门,但不知道哪一把钥匙开哪一扇门,现在要打开所有关闭的20个库房门,他最多要开多少次?_____
A: 80
B: 160
C: 200
D: 210
参考答案: D
本题解释:D【解析】本题应从最不利情况去考虑:打开第一个房间要20次,打开第二个房间要19次……共计要开20+19+18+…+1=210(次)。
5、单选题 某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人
B: 至少有15人
C: 有20人
D: 至多有30人
参考答案: B
本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。