1、单选题 小雨把平时节省下来的全部1角的硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小雨所有的1角硬币合起来总共是多少钱?_____
A: 3元
B: 5元
C: 4元
D: 6元
参考答案: D
本题解释:正确答案是D考点计数模型问题解析解析1:由硬币可围成正三角形、正方形可知,硬币总数既是3的倍数又是4的倍数,即3、4的最小公倍数是12,结合选项只有6元(即60角)满足条件,故正确答案为D。解析2:设正方形每边个数为x,则三角形每边个数为x+5,因此有4(x-1)=3(x+5-1),解得x=16。因此硬币总个数为4×(16-1)=60,也即硬币合计6元。故正确答案为D。标签最小公倍数数字特性
2、单选题 有一笔奖金,按1:2:3的比例来分,已知第三人分450元,那么这笔奖金总共是_____元。
A: 1150
B: 1000
C: 900
D: 750
参考答案: C
本题解释:正确答案是C考点和差倍比问题解析根据题意可知,三个奖金赋值份数为1,2,3份,这笔奖金共分为6份,而分到3份的第三人拿到了450元,则6份为450×2=900元。故正确答案为C。
3、单选题 任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?_____
B: 1
C: 2
D: 3
参考答案: B
本题解释:正确答案是B考点多位数问题解析用特殊值法,任取一个数,例如取60,60÷2=30,30÷2=15,15×3+1=46,46÷2=23,23×3+1=70,70÷2=35,35×3+1=106,106÷2=53,53×3+1=160,160÷2=80,80÷2=40,40÷2=20,20÷2=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,1×3+1=4,继续计算结果以4、2、1循环,故最终得到的结果为1,再取一个数验证,64÷2=32,32÷2=16,16÷2=8,16÷2=4,4÷2=2,2÷2=1,最终结果仍然为1,故正确答案为B。
4、单选题 一个半径为r的圆用一些半径为r/2的圆去覆盖,至少要用几个小圆才能将大圆完全盖住?_____
A: 5个
B: 6个
C: 7个
D: 8个
参考答案: C
本题解释:正确答案是C考点几何问题解析已知大圆半径为r,小圆半径为r/2,则4个小圆的面积恰好等于一个大圆的面积。为保证小圆尽可能的覆盖大圆,当4个小圆不重叠时,所覆盖大圆部分的面积必小于大圆自身面积,若用5个小圆覆盖大圆,因为小圆的直径等于大圆的半径,所以当5个小圆不重叠时,无法覆盖住大圆的圆周,而6个小圆则恰好盖住大圆圆周,此时中间空白处再加上1个小圆,可将大圆完全覆盖,所以共需要7个小圆,如下图所示。
5、单选题 一艘游轮从甲港口顺水航行至乙港口需7小时,从乙港口逆水航行至甲港口需9小时。问如果在静水条件下,游轮从甲港口航行至乙港口需多少小时?_____
A: 7.75小时
B: 7.875小时
C: 8小时
D: 8.25小时
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:根据所需时间比,设距离为63,则游轮顺水和逆水的速度分别为9、7,则游轮自身的速度为(9+7)÷2=8,因此在静水条件下所需时间为63÷8=7.875小时。解析2:设甲乙港口相距距离为s,则游轮顺水和逆水的速度分别为s/7、s/9,游轮自身速度为(s/7+s/9)÷2,因此静水条件下所需时间为s÷[(s/7+s/9)÷2]=63÷8=7.875小时。标签顺水漂流模型赋值思想