1、单选题 每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?_____
A: 40分钟
B: 48分钟
C: 56分钟
D: 64分钟
参考答案: B
本题解释:参考答案B
题目详解:他们第四次相遇时:三人跑的路程一定均为200的整数倍;而三个人的速度分别为250/3米/分,350/3米/分,450/3米/分;因此三人第四次相遇时:跑的时间一定是3的整数倍;只有B项符合;所以,选B。考查点:数量关系>数学运算>行程问题>追及问题>环线追及问题>环线多次追及问题
2、单选题 甲、乙两人骑车同时从家出发相向而行,甲每分钟行600米,乙每分钟行750米,在距两家中点600米的地方相遇。问两家相距多少米_____
A: 2150
B: 1350
C: 1200
D: 10800
参考答案: D
本题解释:【解析】D。甲的速度比乙的速度慢,说明甲所行路程距离中点还有600米,而乙行走的路程超过中点600米,即相同的时间内乙比甲多走了600+600=1200(米)。由“追及时间=追及路程÷速度差”可以求出相遇时间:(分钟),因此两家的距离是(米)。
3、单选题 10个人欲分45个苹果,已知第一个人分了5个,最后一人分了3个,则中间的8人一定存在连续的两人至少分了多少个苹果?_____
A: 8
B: 9
C: 10
D: 11
参考答案: C
本题解释:【答案】C。解析:中间的8人共分得苹果45-5-3=37(个),将中间的8人分为4组,即(第2、3个人)(第4、5个人)(第6、7个人)(第8、9个人)。由37=9×4+1可知,必有1组,即连续的两人分到了10个苹果。故答案为C。
4、单选题 甲乙两人共有100个玻璃球,若把甲的玻璃球的四分之一给乙,乙将比甲多九分之七,则甲原来有多少个玻璃球?_____
A: 40
B: 48
C: 56
D: 60
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析根据题意,甲玻璃球数的四分之三应能被9整除,可以排除A、C;再对B、D加以验证,可得只有B符合,故正确答案为B。标签直接代入数字特性
5、单选题 三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是_____。
A: A等和B等共6幅
B: B等和C等共7幅
C: A等最多有5幅
D: A等比C等少5幅
参考答案: D
本题解释:正确答案是D考点不定方程问题解析解析1:分别以等级代表其数量,根据题意可得A+B+C=10……①;3A+2B+C=15……②②-①×2可得:C-A=5,因此正确答案为D。解析2:代入选项法。根据题意可得A+B+C=10……①;3A+2B+C=15……②此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。类似的方法可排除选项B、C。故正确答案为D。解析3:根据题意可得A+B+C=10……①;3A+2B+C=15……②由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。解析4:根据题意可得A+B+C=10……①;3A+2B+C=15……②对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。