1、单选题 要使六位数15ABC6能被36整除,而且所得的商最小,那么这个六位数为:_____
A: 151236
B: 152136
C: 150156
D: 151516
参考答案: C
本题解释:参考答案:C本题得分:
题目详解:要求:1+5+6+A+B+C=9的倍数,得出A+B+C=610C+6能被4整除。得出C=3或者5,7,9结合上述两个,得出C=5,B=1,A=0,六位数为150156150156/36=4171考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除特征
2、单选题 大年三十彩灯悬,灯齐明光灿灿,数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯至少有多少盏?_____
A: 21
B: 27
C: 36
D: 42
参考答案: A
本题解释:参考答案:A本题得分:
题目详解:题干告诉我们灯的数目能整除7,被5除余数为1,被8除余数为5。方法一:代入法求解方法二:用“层层推进法”先找出满足被5除时余数为1的最小数为:5+1=6;然后在6的基础上每次都加5直到满足被8除时余数为5为止,6+5+5+5=21,21刚好能整除7,故彩灯至少有21盏;所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质
3、单选题 商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱,已知一个顾客买的货物重量是另一个顾客的2倍。商店剩下的一箱货物重多少千克_____。
A: 16
B: 18
C: 19
D: 20
参考答案: D
本题解释:参考答案:D本题得分:
题目详解:6箱货物总重为:15+16+18+19+20=119千克;已知一个顾客买的货物重量是另一个顾客的2倍,那么说明这五箱货物的总重能被3整除:已知119÷3=39……2,所以减掉的一箱重量应该是除以3余数为2,15÷3=516÷3=5……118÷3=619÷3=6……120÷3=6……231÷3=10……1因此,只有20的符合题目,所以剩下的一箱是20kg;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质
4、单选题 有一个三位数能被7整除,这个数除以2余1,除以3余2,除以5余4,除以6余5。这个数最小是多少?_____
A: 105
B: 119
C: 137
D: 359
参考答案: B
本题解释:参考答案:B本题得分:
题目详解:根据题意,设此数为A,则:它减1是2的倍数,减2是3的倍数,减4是5的倍数,减5是6的倍数,说明这个数除以2、3、5、6的余数都是1;则A+1为2、3、5、6的公倍数,且A为三位数,A+1最小为:
5、单选题 (2009•国考)甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?_____
A: 75
B: 87
C: 174
D: 67
参考答案: B
本题解释:参考答案:B本题得分:
题目详解:根据题意甲的专业书:甲的书有13%是专业书,即有甲的13/100是专业书;甲的书本数:由于书的本数为整数,则甲的书本数只能为100或200;乙的专业书:乙的书有12.5%是专业书,即有乙的1/8是专业书;乙的书本数:由于书的本数为整数,则乙的书本数必能被8整除;甲、乙两人共有260本书,甲的书本数为100或200,则乙的书的本数为160或60,其中只有160能被8整除,故乙的书本数为160,则甲有100本书,其非专业书本数为100×(1-13%)=87本。所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质