1、单选题 (2005广东下,第11题)要在一块边长为48米的正方形地里种树苗,已知每行相距3米,每竖列相距6米,四角各种一棵树,问一共可种多少棵树苗?_____
A: 128棵
B: 132棵
C: 153棵
D: 157棵
参考答案: C
本题解释:参考答案:C
题目详解:根据“每横行相距3米”、“四角各种一棵树”可知,应使用不封闭植树理论,且为两端均植树问题。两端均植树:点数=总长÷间距+1确定总长:48确定间距:3带入公式:点数=总长÷间距+1=48÷3+1=17根据“每竖列相距6米”,“四角各种一棵树”可知,应使用不封闭植树理论,且为两端均植树问题。两端均植树:点数=总长÷间距+1确定总长:48确定间距:6带入公式:点数=总长÷间距+1=48÷6+1=9总可种树:17×9=153棵。因此,选C。考查点:数量关系>数学运算>特殊情境问题>植树问题>两端均植树
2、单选题 某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?_____
A: 15人
B: 16人
C: 17人
D: 18人
参考答案: A
本题解释:A【解析】利用三交集公式A+B+C=AUBUC+AnB+BnC+AnC-AnBnC(AnBnC是指语文,数学,英语三个都参加的人,AUBUC是只总人数),A+B+C=17+30+13,AnBnC=5,AUBUC=35,所求为AUBUC-(AnB+BnC+AnC)+AnBnC。 方便解法:参加一个小组的为x人,两个小组的为y人,x+y+5=35,x+2y+3×5=17+30+13,x=15。
3、单选题 有两个三口之家一起出行去旅游,他们被安排坐在两排相对的座位上,其中一排有3个座位,另一排有4个座位。如果同一个家庭成员只能被安排在同一排座位相邻而坐,那么共有多少种不同的安排方法?_____
A: 36
B: 72
C: 144
D: 288
参考答案: C
本题解释:正确答案是C考点排列组合问题解析
4、单选题 在9×9的方格表中,每行每列都有小方格被染成黑色,且一共只有29个小方格为黑色。如果a表示至少包含5个黑色小方格的行的数目,b表示至少包含5个黑色小方格的列的数目,则a+b的最大值是_____。
A: 25
B: 10
C: 6
D: 14
参考答案: B
本题解释:B【解析】假设a+b≥11,且a≥b,则2a≥11,因为不存在染半格的情况,所以a≥6。那么这a行中至少有黑色小方格6×5=30(个),与题干中只有29个黑色小方格的条件相矛盾,因此假设不成立,a+b≤10,当a+b=10时,黑色小方格的分布如下图。故本题答案为B。
5、单选题 两个运输队,第一队有320人,第二队有280人,现因任务变动,要求第二队的人数是第一队人数的2倍,需从第一队抽调多少人到第二队?_____
A: 80人
B: 100人
C: 120人
D: 140人
参考答案: C
本题解释:C设需抽调x人,根据题意可得2(320-x)=280+x,解得x=120人。