微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:_____
A: 2%B: 8%C: 40.5%D: 62%
参考答案: D 本题解释:【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。
2、甲、乙二人2小时共加工54个零件,甲加工3小时的零件比乙加工4小时的零件还多4个。甲每小时加工多少个零件?_____
A: 11B: 16C: 22D: 32
参考答案: B 本题解释: 【解析】B。解法一、设俩人速度分别为x、y,则2x+2y=54,3x-4y=4,解得x=16;解法二、从第一句话知D不对。从第二句话中知甲每小时加工的零件是4的倍数。
3、甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
4、从一副完整的扑克牌中,至少抽出_____张牌,才能保证至少6张牌的花色相同。
A: 21B: 22C: 23D: 24
参考答案: C 本题解释:【答案】C。解析:一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。
5、用方形地砖铺一块了正方形地面,四周用不同颜色的地砖加以装饰,用47块不同颜色的砖装饰了这块地面相邻的两边。这块地面一共要用_____块砖。
A: 324B: 576C: 891D: 1024
参考答案: B 本题解释:B【解析】最外层每边铺地砖(47+1)÷2=24块,故一共要用24×24=576块砖。
6、某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少元钱? _____
A: 550B: 600C: 650D: 700
参考答案: B 本题解释:【答案】B。解析:若付款时不满400元,则原价为384.5÷95%÷85%元,结果为非整数,没有选项符合;若付款时满400元,则原价为(384.5+100)÷95%÷85%=600元,选择B。
7、某人上午8点要上班,可是发现家里的闹钟停在了6点10分,他上足发条但忘了对表就急急忙忙的上班去了,到公司一看还提前了10分钟。中午12点下班后,回到家一看,闹钟才11点整,假定此人上班、下班在路上用的时间相同,那么他家的闹钟停了多少分钟?_____
A: 100B: 90C: 80D: 70
参考答案: C 本题解释:【解析】C。由题意知:6时10分+闹钟停的时间=7时50分;11时+闹钟停的时间=12时+下班后路上走的时间,所以闹钟停的时间+上班时间=7时50分-6时10分=100分钟,闹钟停的时间上班时间=12时-11时=60分,故闹钟停的时间为(100+60)÷2=80分钟。
8、某单位有员工540人,如果男员工增加30人就是女员工人数的2倍,那么原来男员工比女员工多几人?_____
A: 13B: 31C: 160D: 27
参考答案: C 本题解释:【答案】C。解析:男员工增加30人后,总员工为570人,男员工是女员工的2倍,得女员工为570÷3=190,则原有男员工540-190=350,男员工比女员工多350-190=160人。故正确答案为C。老师点睛:男员工增加30人后,总员工为570人,男员工是女员工的2倍,由于540、30均为偶数,则原有男、女员工的数目也为偶数,男员工比女员工多的人数也是偶数。只有选项C符合条件,故正确答案为C。
9、两辆汽车同时从某地出发到同一目的地,路程180千米。甲车比乙车早到0.8小时。当甲车到达目的地时,乙车离目的地32千米。甲车行驶全程用了_____小时。
A: 3.5B: 3.7C: 4D: 4.5
参考答案: B 本题解释:【解析】乙车的速度为32÷0.8=40千米/小时,则乙车行驶全程用了180÷40=4.5/小时,故甲行驶全程用了4.5-0.8=3.7小时。
10、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
11、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0?5元运输费,则最少需要运费_____。
A: 4500元B: 5000元C: 5500元D: 6000元
参考答案: B 本题解释:[解析]正确答案为B。根据题意,一至五号仓库为依次排列,最有效的货物集中方式为把一和二号仓库中的货物集中到五号仓库中,则总费用为0.5×(300×20+400×10)=5000元,所以选择B项。
12、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? _____
A: 10B: 8C: 6D: 4
参考答案: B 本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。
13、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每减1元,我就多订购4件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润。则这种商品每件的成本是_____。
A: 75元B: 80元C: 85元D: 90元
参考答案: A 本题解释:【解析】A。设成本为x元。减价5%即减去了5元,同样就要多购买4×5=20件,利润相同,即可得到等式(100-x)×80=(95-x)×(80+20),得x=75。
14、一条路上依次有A、B、C三个站点,加油站M恰好位于AC的中点,加油站N恰好位于BC的中点。若想知道M和N两个加油站之间的距离,只需要知道哪两点之间的距离?_____
A: CNB: BCC: AMD: AB
参考答案: D 本题解释:D。
15、某储户于1999年1月1日存入银行60 000元,年利率为2.00%,存款到期日即2000年1月1日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为_____。
A: 61 200元 B: 61 160元C: 61 000元 D: 60 040元
参考答案: B
16、甲、乙两人骑车同时从家出发相向而行,甲每分钟行600米,乙每分钟行750米,在距两家中点600米的地方相遇。问两家相距多少米_____
A: 2150B: 1350C: 1200D: 10800
参考答案: D 本题解释:【解析】D。甲的速度比乙的速度慢,说明甲所行路程距离中点还有600米,而乙行走的路程超过中点600米,即相同的时间内乙比甲多走了600+600=1200(米)。由“追及时间=追及路程÷速度差”可以求出相遇时间:(分钟),因此两家的距离是(米)。
17、有若干张卡片,其中一部分写着1.1,另一部分写着1.11,它们的和恰好是43.21。写有1.1和1.11的卡片各有多少张_____
A: 8张,31张B: 28张,11张C: 35张,11张D: 4l张,l张
参考答案: A 本题解释:【答案】A。解析:代入法,8×1.1+31×1.11=43.21,符合题意。
18、市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410B: 400C: 390D: 380
参考答案: D 本题解释: 【解析】正方形的边长是20米,那么圆的半径是
米,那么圆形草坪的面积是
,故选D。
19、某三年制普通初中连续六年的在校生人数分别为:X1,X2,X3,X4,X5,X6.假设该校所有学生都能顺利毕业,那么前三年的入学学生总数与后三年的入学学生总数之差为_____
A: (X1+X2+X3)-(X4+X5+X6) B: X1-X4C: X3-X6 D: (X3-X1)-(X6-X4)
参考答案: C 本题解释:【解析】C.考查整体思维。前三年入学学生人数本质上就是第三年的在校生人数X3(第三年在校生的初三、初二、初一分别为前三年的入学人数),类似的,X6即为后三年的入学人数。故答案为X3-X6.
20、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
21、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
22、某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为_____。
A: 60度B: 65度C: 70度D: 75度
参考答案: A 本题解释:【答案解析】基本价格的80%是0.5×0.8=0.4,设每月标准用电X度,则0.5X+(84-X)×0.4=39.6,解得X=60,选A。
23、三河村与县城相距18千米。王秘书从三河村委去县城办事。他走1.5千米时,通讯员小张发现王秘书忘了带东西,于是立即追赶。小张追上小王秘书后,马上返回村委,这时王秘书忘了带东西,于是立即追赶。小张追上王秘书后,马上返回村委,这时王秘书也刚到县城。已知小张比王秘书每小时多走1千米,王秘书和小张的速度各是多少?_____
A: 4千米/时B: 5千米/时C: 5.5千米/时D: 6千米/时
参考答案: C 本题解释:【解析】C。王秘书的速度为(18-1.5)÷(1.5÷1×2)=5.5千米/时。
24、某商店以每件6元的进价买回一批商品,售价为每件8.4元,当卖了这批商品的3/4时,不仅收回了购买这批商品所付的款项,而且还获得利润90元,这批商品有多少件?_____
A: 500 B: 600 C: 300 D: 400
参考答案: C 本题解释:【解析】C。 设这批商品有x件,可列方程:x×6=34x×8.4-90,解得x=300,所以本题答案为C。
25、在下图中,大圆的半径是8。求阴影部分的面积是多少_____
A: 120B: 128C: 136D: 144
参考答案: B 本题解释:【答案】B。解析:割补法。阴影部分可拼成一条对角线长为16的正方形。如图,故面积是16×16÷2=128。
26、在棱长为12厘米的正方体的面的中心挖洞,并通到对面。洞口是边长为3厘米的正方形。它现在的表面积是多?_____
A: 846平方厘米B: 986平方厘米C: 1134平方厘米D: 1324平方厘米
参考答案: C 本题解释:【解析】C。表面积=6×12×12-6×3×3+6×3×4×[(12-3)÷2]=1134平方厘米。
27、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比为15%;第二次又加入同样多的水,糖水的含糖量百分比为12%;第三次加入同样多的水,糖水的含糖量百分比将变为多少? _____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:C。【解析】设第一次加入糖水后,糖水的量的为100,则糖的量为15,第二次加水后,糖水的量为15/12*100=125,即加水的量为125-100=25,第三次加水,百分比为15/(125+15)=10%
28、1.31×12.5×0.15×16的值是_____。
A: 39.3B: 40.3C: 26.2D: 26.31
参考答案: A 本题解释:答案:A【解析】本式可写为1.31×12.5×4×0.15×4。
29、实行“三统一”社区卫生服务站卖药都是“零利润”。居民刘某说“过去复方降压片卖3.8元,现在才卖0.8元;藿香正气水以前2.5元,现在降了64%。另外两种药品也分别降了2.4元和3元。”问这四种药平均降了_____
A: 3.5元B: 1.8元C: 3元D: 2.5元
参考答案: D 本题解释: 【解析】D。藿香正气水降价2.5×64%=1.6元,则四种药平均降价(3.8-0.8+1.6+2.4+3)÷4=2.5元。
30、有两个山村之间的公路都是上坡和下坡,没有平坦路。客车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时。现知客车在两个山村之间往返一次,需要行驶4小时。请问这两个山村之间的距离有多少千米?_____
A: 45B: 48C: 50D: 24
参考答案: B 本题解释: 【解析】B。根据平均速度公式可知,全程的平均速度是:
,全程的平均速度是:
。(已知往返速度,求全程的平均速度,是有简便的算法的,要熟练把握。)两山村之间的路程是:(24×4)2=48千米。
31、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:B【解析】最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
32、小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?_____
A: 1.5B: 2C: 2.5D: 3
参考答案: B 本题解释:B【解析】行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x/y=2y/(x-y),解得x=2y,故两人的速度比为2:1。
33、某小学六年级的同学要从10名候选人中投票选举三好学生,规定每位同学必须从这10个人中任选两名,那么至少有_____人参加投票,才能保证必有不少于5个同学投了相同两个候选人的票。
A: 256B: 241C: 209D: 181
参考答案: D 本题解释:【解析】从10人中选2人,共有45种不同的选法。要保证至少有5个同学投了相同两个候选人的票,由抽屉原理知,至少要45×4+1=181人。
34、某市出租车收费标准是:5千米内起步费10.8元,以后每增加1千米增收1.2元,不足1千米按1千米计费。现老方乘出租车从A地到B地共支出24元,如果从A地到B地先步行460米,然后再乘出租车也是24元,那么从AB的中点C到B地需车费_____元。(不计等候时间所需费用)
A: 12B: 13.2C: 14.4D: 15.6
参考答案: C 本题解释:经济M题。共花钱24元,超过5千米的部分为24-10.8=13.2(元),超过5千米后走了13.2÷1.2=11(千米),总路程最多为16千米,因为步行460米后花费相同,说明460米后的路程一定超过15千米,则总路程15+0.46<S≤16,则C到B的距离7.73<< p>S/2≤8,因不足1千米按1千米计费,故应看成8千米,共花费10.8-9(8-5)×1.2=14.40(元)。
35、2010年5月1日世博会开幕,当天是星期六,则2007年3月1日是_____。
A: 星期一B: 星期二C: 星期三D: 星期四
参考答案: D 本题解释:D【解析】由题意2010年5月1日星期六,则与2007年5月1日月份日期相同,根据核心口诀︰①一年就是1——从2007年至2010年是三年,所以加“3”②闰月再加1——从2007年至2010年1个闰月,所以加“1”又由于2007年3月1日至5月1日中间相隔2个月,所以就是“4”,多少再补算——3月31日一个“31”日,加1,故应在2010年5月1日星期六基础上减3+1+4+1=9天,最后可得2007年3月1日是星期四,正确答案为D选项。
36、一个正三角形和一个正六边形周长相等,则正六边形面积为正三角形的:_____
A: AB: BC: CD: D
参考答案: B 本题解释:答案:B.[解析]本题为几何类题目。因为正三角形和一个正六边形周长相等,又正三角形与正六边形的边的个数比为1︰2,所以其边长比为2︰1,正六边形可以分成6个小正三角形,边长为1的小正三角形面积:边长为2的小正三角形面积=1︰4。所以正六边形面积:正三角形的面积=1×6/4=1.5。所以选B。
37、某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:答案: A 解析:该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
38、有a、b、c三个数,已知a×b=24,a×c=36,b×c=54,求a+b+c=_____
A: 23B: 21C: 19D: 17
参考答案: C 本题解释: C 解析:此题最好用猜证结合法。试得a、b、c分别为:4、6、9,故选C。若要正面求解:则由前两个式子可得b=2c/3,代入第三个式子可得c=9,进而求得a=4,b=6。,a2=24×36÷54=16,所以a=4,则b=6,c=9,故a+b+c=19。
39、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。
40、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。老师点睛:45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。
41、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?_____
A: 19B: 20C: 18D: 17
参考答案: B 本题解释:【解析】由已知得每个数字开头的数各有24÷4=6个,从小到大排列,7开头的从第6×3+1=19个开始,易知第19个是7245,第20个是7254。
42、一艘游轮逆流而行,从A地到B地需6天;顺流而行,从B地到A地需4天。问若不考虑其他因素,一块塑料漂浮物从B地漂流到A地需要多少天_____
A: 12天B: 16天C: 18天D: 24天
参考答案: D 本题解释:D【解析】设静水速度是X,水流速度是Y,那么可以列出方程组:1/(X-Y)=6,1/(X+Y)=4;可解得1/Y=24,即为水流速度漂到的时间。
43、27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?_____
A: 21 B: 23C: 25D: 27
参考答案: A 本题解释:A。【解析】代入法,购买21瓶可换回7瓶,显然满足。但本题有问题,如果计算本题,购买19平饮料即可。19瓶饮料可以换6瓶新的饮料,这六瓶又可以换得2瓶,一共得到19+6+2+1=28瓶。如果一定要说21时正确答案的话,那只能从口渴难耐四个字找原因了。只换一次,最少要购买21瓶。
44、下列哪项能被11整除? _____
A: 937845678B: 235789453C: 436728839D: 867392267
参考答案: A 本题解释:A【解析】9+7+4+6+8=343+8+5+7=2334-23=11所以,答案是A。
45、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
46、市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410 B: 400 C: 390 D: 380
参考答案: D 本题解释: 【解析】正方形的边长是20米,那么圆的半径是
米,那么圆形草坪的面积是
,故选D。
47、小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?_____
A: 144B: 136C: 132D: 128
参考答案: C 本题解释:C。
48、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
49、在直线上两个相距一寸的点A和B上各有一只青蛙,A点的青蛙沿直线跳往关于B点的对称点Al,而B点的青蛙跳往关于A点的对称点B1。然后A1点的青蛙跳往关于B1点的对称点A2,B1点的青蛙跳往关于A1点的对称点B2,如此下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多长距离?_____
A: 364寸B: 1088寸C: 1093寸D: 2187寸
参考答案: C 本题解释:C【解析】两只青蛙各跳一次,两只青蛙的距离为原来的3倍,所以跳7次后,两只青蛙的距离为A7B7=37×1=2187(寸)。而且A7在右,B7在左,由对称性可知B7A=BA7,所以BA7=
(寸),故本题正确答案为C。
50、在一条公路旁有4个工厂,每个工厂的人数如图所示,且每两厂之间距离相等。现在要在公路旁设一个车站,使4个工厂的所有人员步行到车站总路程最少,这个车站应设在几号工厂门口?_____
A: 1号B: 2号C: 3号D: 4号
参考答案: C 本题解释:C【解析】 一般情况车站设在几个工厂的中间,即设在2号工厂或3号工厂门口。由于各厂人数不同,还是应通过计算再决定车站在哪一个工厂门口合适。如果设车站建在2号工厂门口,且设每两个工厂之间距离为1千米,那么4个工厂所有人员步行总路程为:1×100+1×80+2×215=100+80+430=610(千米)如果车站设在3号工厂门口,每两个工厂之间的距离为1千米,那么4个工厂所有人员步行总路程为:1×100×2+1×120+1×215=200+120+215=535(千米)显然,车站设在3号厂门口,才能使4个工厂所有人员步行到车站总路程最少。故本题选C。
51、某水果店经销一种销售成本为每千克40元的水果。据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。水果店想在月销售成本不超过10000元的情况下,使得月销售利润最大,则定价应为每千克多少元?_____
A: 65B: 70C: 75D: 80
参考答案: C 本题解释:当销售单价定为每千克2元时,月销售量为:500—10×(χ一50)=1000一1Oχ,每千克的销售利润为(χ一40)元,所以月销售利润为:Y=(χ一40)(1000一1Oχ)=一1Oχ2+1400χ-40000=一10(χ一70)2+9000,因为月销售成本不超过10000元,所以40×(1000一1Oχ)≤10000,解得χ≥75。因为二次函数Y=一10(χ一70)2+9000的对称轴为χ=70,χ=75时离对称轴最近,此时Y取最大值,为8750。故本题正确答案为C。
52、将1~9九个自然数分成三组,每组三个数,第一组三个数之积是48,第二组三个数之积是45,三组数字中数字之和最大是多少?_____
A: 15B: 17C: 18D: 20
参考答案: C 本题解释:【答案】C。解析:显然要对48和45进行乘法拆分,显然45的可拆分情况较少,故先拆分45=1×5×9,由此可知48=2×3×8=2×4×6两种拆分情况,由此可知第三组三个数对应48的拆分也有两种情况:4、6、7;3、7、8。于是可知三组数字中加和最大的一组为3、7、8,加和为18。故正确答案为C。
53、甲乙两人相约见面,并约定第一人到达后,等15分钟不见第二人来就可以离去。假设他们都在10点至10点半的任一时间来到见面地点,则两人能见面的概率有多大?_____
A: 37.5%B: 50%C: 62.5%D: 75%
参考答案: D 本题解释:答案:D.[解析]本题为概率类题目。假设甲、乙分别在0-30分钟之内到达约会地点的情况如下图,则只有在阴影部分区域甲乙能够相遇,也就是求阴影部分面积的比例。很容易看出,阴影部分的面积为3/4=75%。
54、一只猎豹锁定了距离自己200米远的一只羚羊,以108千米/小时的速度发起进攻,2秒钟后,羚羊意识到危险,以72千米/小时的速度快速逃命。问猎豹捕捉到羚羊时,羚羊跑了多少路程?_____
A: 520米 B: 360米 C: 280米 D: 240米
参考答案: C 本题解释:【答案】C。解析:108千米/小时=30米/秒,72千米/小时=20米/秒,开始猎豹距离羚羊200米,羚羊意识到危险的时候,猎豹距离羚羊200米-30米/秒×2秒=140米。根据追击问题计算公式:速度差×追击时间=路程差,即(30-20)t=140,t=14秒,即猎豹捕捉到羚羊时,羚羊跑了14秒,路程为20×14=280米。
55、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。甲某身高1.8米,同一时刻在地面形成的影子长0.9米。则该电线杆的高度为_____。
A: 12米B: 14米C: 15米D: 16米
参考答案: C 本题解释:【答案】C。解析:
56、小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差_____。
A: 4岁B: c+4岁C: 5岁D: c-3岁
参考答案: C 本题解释:【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
57、混合并购是指一个企业对那些与自己生产的产品不同性质和种类的企业进行并购的行为,其中目标公司与并购企业既不是同一行业,又没有纵向关系。根据上述定义,下列属于混合并购的是_____。
A: 某碳酸饮料公司收购了一家灌装公司和一家饼干公司B: 某网站收购了一家户外传媒公司和一家网络游戏公司C: 某出版集团收购了一家印刷厂和一家文学网站D: 某电脑集团收购了一家酒厂和一家葡萄庄园
参考答案: D 本题解释:定义的关键信息是“目标公司与并购企业既不是同一行业,又没有纵向关系”。A项,灌装公司可以为饮料提供包装,因此和并购企业存在纵向关系,而饼干公司则和碳酸饮料公司都属于食品行业。B项,网站属于互联网传媒,因此网站和户外传媒属于同一行业;同时,网站也可能提供网络游戏,因此网站与网络游戏公司也可能存在纵向关系。C项,印刷是出版的一道流程,因此印刷厂和出版集团存在纵向关系。D项,酒厂和葡萄庄园虽然有可能存在纵向关系,但是二者与并购企业——电脑集团的产品性质完全不同,且不存在任何关系,因此选D。
58、在一次有四个局参加的工作会议中,土地局与财政局参加的人数比为5∶4,国税局与地税局参加的人数比为25∶9,土地局与地税局参加人数的比为10∶3,如果国税局有50人参加,土地局有多少人参加?_____
A: 25 B: 48 C: 60 D: 63
参考答案: C 本题解释: 【解析】根据以上比例关系,可得出土地局︰地税局︰国税局=30︰9︰25,所以土地局有60人参加。所以选C。
59、一个正方体木块放在桌子上,每一面都有一个数,位于相对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B。题目给出相对面数字之和为13的条件,则注意将其余条件中出现的相对面合在一起。从这一点出发,可以看出若将小张与小王看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为13×2=26,因此顶面的数字为(18+24—26)÷2=8,于是底面数字为13—8=5。故选B。
60、一个四边形广场,它的四边长分别是60米,72米,84米,96米,现在在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?_____
A: 22B: 25C: 26D: 30
参考答案: C 本题解释:【解析】C。4个数字都相差12,可将树的间隔设为12米,可种树(60+72+84+96)/12=5+6+7+8=26,选C。
61、有6张卡片,分别写着数字1,2,5,6,8,9。现在从中取出3张卡片,并排放在一起,组成一个三位数。问可以组成多少个不同的偶数?_____
A: 144个B: 120个C: 60个D: 12个
参考答案: C 本题解释: 
62、现有红、黄、蓝三种颜色的珠子各若干颗,分给某班的52个学生,每个学生可以取1至3颗珠子,一种颜色的珠子最多只能取1颗。那么,这班学生中至少有_____人取的珠子完全相同。
A: 5B: 8C: 13D: 17
参考答案: B 本题解释:B[解析]取珠子的种类有如下7种:①红;②黄;③蓝;④红与黄;⑤红与蓝;⑥黄与蓝;⑦红、黄、蓝。从最不巧的情况想。每七个学生取的珠子的种类各不相同,因为52÷7(余3),所以,至少有7+1(即8)个人取的珠子完全相同。故本题正确答案为B。
63、123456788×123456790-123456789×123456789=_____。
A: 0B: 1C: 2D: -1
参考答案: D 本题解释: D [解析] 原式=(123456789-1)×(123456789+1)-1234567892=1234567892-1-1234567892=-1故选D。
64、某次投资活动在三个箱子中均放有红、黄、绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均 为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑.白除外)的得三等奖。那么不中奖的概念是_____。
A: 在0-25%之间B: 在25-50%之间C: 在50-75%之间 D: 在75-100%之间
参考答案: C 本题解释:【解析】C。概率问题。中奖概率为(3/4)3+C13×(1/8)×(1/4)2+C23×(1/8)2×(1/4)=117÷256<50%,故不中奖的概率略大于50%。
65、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?_____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:后三位全是偶数,且三数中相邻数字不同,已知最后一位是6,所以倒数第二位有0、2、4、8四种可能,倒数第三位也有四种可能性,故该手机号码有4×4=16(种)可能。
66、甲、乙、丙三队要完成A,B两项工程,B工程工作量比A工程的工作量多1/4 ,甲、乙、丙三队单独完成A工程所需时间分别是20天、24天、30天。为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程,经过几天后,又调丙队与甲队共同完成A工程,那么,丙队甲队合做了多少天? _____
A: 18B: 15C: 10D: 3
参考答案: D 本题解释:【解析】D。解析:三队完成这项工程一共用了
天,乙队一直在做B工程,一共做了
,则B工程剩下的
为丙做的,故丙队与乙队合做了
天,与甲队合做了18-15=3天。
67、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为_____。
A: 3.4平方米B: 9.6平方米C: 13.6平方米D: 16平方米
参考答案: C 本题解释:本题属于面积问题。因为把边长为1米的正方体木块置于水中有0.6米浸入水中,所以当将其分割为边长0.25米的正方体木块置于水中时,其浸入水中的高度为3/20米。则可以计算出其中一个分割后的正方体木块与水的接触面积为:(1/4)×(1/4)+4×(1/4)×(3/20)=1/16+3/20,又因为边长1米的正方体可以分割为64个边长为O.25米的正方体,所以题中所求面积为:64×(1/16+3/20)=13.6(平方米)。正确答案为C。
68、某日人民币外汇牌价如下表(货币单位:人民币元),按照这一汇率,100元人民币约可以兑换()美元。
A: 12.61B: 12.66C: 12.71D: 12.76
参考答案: C 本题解释:【答案】C。解析:由表格,100美元=786.97人民币,则1美元=7.8697人民币,100人民币可以兑换为100÷7.8697≈10000÷787≈12.709≈12.71(美元),故正确答案为C。
69、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?_____
A: 25B: 50C: 30D: 20
参考答案: D 本题解释:D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
70、某车间三个班组共同承担-批加工任务,每个班组要加工100套产品。因为加工速度有差异,一班组完成任务时二班组还差5套产品没完成,三班组还差10套产品没完成。假设三个班组加工速度都不变,那么二班组完成任务时,三班组还剩_____套产品未完成。
A: 5 B: 80/19 C: 90/19 D: 100/19
参考答案: D 本题解释:D。工程问题。相同的时间内,一班组完成了100套,二班组加工了100-5=95(套),三班组加工了100-10=90(套),因此二班组、三班组的效率比为95∶90。当二班组完成任务时,即加工了100套,设此时三班组加工了x套,有95∶90=100∶x,得到x=1800/19。因此未完成的为100-1800/19=100/19(套)。
71、如下图,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=2×4/5,BD=2.1。问梯形ABCD的高AE的值是_____。
A: 43/24B: 1.72C: 4/252D: 1.81
参考答案: C 本题解释:【解析】由AC×BD=(AD+BC)×AE→AE=42/25。
72、浓度为20%的盐水若干克,加入100克水后浓度变为15%,若要将盐水的浓度变为10%,需要再加水多少克?_____
A: 120B: 150C: 180D: 200
参考答案: D 本题解释:【答案】D。解析:设盐水原重x克,将盐水的浓度变为10%需再加水y克。根据题意,得
解得x=300,y=200。故本题答案选D。
73、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7 B: 10 C: 15 D: 20
参考答案: B 本题解释:【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10
74、某机关共有干部、职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?_____。
A: 51% B: 43% C: 40% D: 34%
参考答案: B
75、某车间进行季度考核,整个车间平均分是85分,其中的人得80分以上(含80分),他们的平均分是90分,则低于80分的人的平均分是多少?_____
A: 68B: 70C: 75D: 78
参考答案: C 本题解释: 【解析】C。解法一、设x为所求,假设总共3人,其中2人80以上,1人低于80分。则
,记住此处别忘了用尾数法快速得到答案;解法二、利用十字交叉法解决混合平均问题。两部分人比例为2︰1,则其各自平均分到85分的距离应该反过来为1︰2=5︰10,直接得到75。
76、一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘到其余各辆旅游车上,已知每辆车上最多能乘坐32人。请问该单位共有多少员工去了泰山?_____
A: 269B: 352C: 478D: 529
参考答案: D 本题解释:D。开走一辆空车,则剩余22+1=23人,需要把23人平均分配到剩余的旅游车上。23的约数只有23和1,而每辆车最多能乘坐32人,排除将23人分配到1辆车上的情况(22+23>32),只能每辆车上分配1人,分配后每辆车有22+1=23人。进行条件转换,如果没有开走那辆车,那么每辆车分配23人,还少23人,加上已有条件“每辆车上乘坐22人,结果有1人无法上车”,就转化成了常规的盈亏问题。有车(1+23)÷(23-22)=24辆。有员工24×22+1=529人。
77、有人将1/10表示为1月10日,也有人将1/10表示为10月1日,这样一年中就有不少混淆不清的日期了,当然,8/15只能表示8月15日,那么,一年中像这样不会搞错的日期最多会有多少天?_____
A: 221B: 234C: 216D: 144
参考答案: B 本题解释:【答案】B。解析:当日期在1-12中取值时才会混淆,其中在1月1日,2月2日,......12月12日不会混淆。共有12×12-12=132天会混淆,若是平年,则一年中不会混淆的日期会有365-132=233天,若是闰年则多一天,所以最多会有234天。
78、某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?_____。
A: 53 B: 54C: 55 D: 56
参考答案: D 本题解释:D
79、有一堆钢管,最下面一层是30根,逐层往上,每一层比下一层少一根钢管,则这堆钢管最多有_____根。
A: 450B: 455C: 460D: 465
参考答案: D 本题解释:最多显然是一直堆上去,直至最顶层只有1根,此时从上到下每层钢管数呈等差数列,公差为1,层数30,总数为(1+30)×30÷2=465。故选D。
80、在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是_____秒。
A: 80B: 100C: 120D: 140
参考答案: D 本题解释:【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。
81、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
82、商场销售某种商品的加价幅度为其进货价的40%,现商场决定将加价幅度降低一半来促销,商品售价比以前降低了54元。问该商品原来的售价是多少元?_____
A: 324B: 270C: 135D: 378
参考答案: D 本题解释:假设进价是10份,则原来售价是14份,现在售价是12份。差2份是54元,那么14份是54×7=378(元)。
83、某商品76件,出售给33位顾客,每位顾客最多买3件。买1件按原定价,买2件降价10%,买3件降价20%。最后结算,平均每件恰好按原价的85%出售,那么买3件的顾客有多少人?_____
A: 14B: 10C: 7D: 2
参考答案: A 本题解释:A【解析】 买2件商品按原价的90%,买3件商品按原价的80%。由于 =85%,即1个人买1件与1个人买3件的平均,每件正好是原定价的85%;又由于 =85%,所以2个人买3件与3个人买2件的平均,每件正好是原价的85%。因此,买3件的人数是买1件的人数与买2件人数的之和。设买2件的有x人,则买1件的有(33-x- x)÷2(人),买3件的有 x+(33-x- x)÷2(人)。因为共有商品76件,于是有方程(33-x- x)÷2+2x+3×[ x+(33-x- x)÷2]=76,解出x=15(人)。买3件的有x+(33-x- x)÷=14(人)故买3件的顾客有14人。选A。
84、小王的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是小王的5倍,爸爸年龄在4年前是小王的4倍,则小王的爸爸今年多少岁? _____
A: 40B: 36C: 32D: 44
参考答案: B 本题解释:B。假设奶奶和爷爷一样大,妈妈和爸爸一样大,全家年龄和是200+4=204岁,这样爷爷、奶奶的年龄和是10个小王的年龄。而爸爸的年龄是4年前小王的4倍多4岁,换句话说,就是比现在小王年龄的4倍少4×4-4=12岁,妈妈也比现在小王的年龄的4倍少12岁,这样现在全家人的年龄和204+12+12=228岁,则小王的年龄为228÷(5×2+4×2+1)=12岁,爸爸的年龄为(12-4)×4+4=36岁。
85、一篇文章,现有甲乙丙三人,如果由甲乙两人合作翻译,需要10小时完成,如果由乙丙两人合作翻译,需要12小时完成,现在先由甲丙两人合作翻译4小时,剩下的再由乙单 独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15B: 18C: 20D: 25
参考答案: A 本题解释:正确答案是 A。考点:工程问题解析:设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
86、某单位职工24人中,有女性11人,已婚的有16人。已婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释: B 解析:由题意:未婚共有:24-16=8人,其中未婚女性有:11-6=5人,故未婚男性有:8-5=3人,选B。
87、某车工计划15天里加工420个零件,最初3天中每天加工24个,以后每天至少要加工多少个才能在规定的时间内超额完成任务?_____
A: 31B: 29C: 30D: 28
参考答案: B 本题解释:【解析】B。(420-24×3)÷(15-3)=29
88、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有_____。
A: 22人B: 28人C: 30人D: 36人
参考答案: A 本题解释:【答案解析】本题可以使用阴影覆盖法,即100-(40+18+20)=22(人),故远A项。
89、计算:(1+12)×(1-12)×(1+13)×(1-13)×…×(1+199)×(1-199)的值为_____。
A: 1C: 50/101D: 50/99
参考答案: D 本题解释:D[解析]原式=(1+1/2)×(1+1/3)×…×(1+1/99)×(1-1/2)×(1-1/3)×…×(1-1/99)=(3/2×4/3×5/4×…×99/98×100/99)×(1/2×2/3×3/4×…×97/98×98/99)=100/2×1/99=50/99因此,本题正确答案为D。
90、两排蜂房,一只蜜蜂从左下角的1号蜂房到8号蜂房,假设只向右方(正右或右上或右下)爬行,则不同的走法有_____。
A: 16种B: 18种C: 21种D: 24种
参考答案: C 本题解释: 
91、现有篮球、排球、乒乓球、足球、网球五门选修课,每名学生必须要从中选出而且仅选择2门选修课,问至少有多少名学生进行选课,才能保证至少有6名学生所选的选修课相同?_____
A: 48B: 50C: 51D: 70
参考答案: C 本题解释:【答案】C。解析:要求五门课程选出两门,共有C25=10种,要至少有6名学生所选的选修课相同,那么这10中选课方式各有5名学生选择,共有10×5=50人,之后再来一人,就可以保证有6名学生所选的选修课相同,则为50+1=51人,所以答案为C。
92、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是_____
A: 166米B: 176米C: 224米D: 234米
参考答案: B 本题解释:B.【解析】400-(480×0.1)=352/2=176米。
93、4 731×80×25×10的值为_____。
A: 94620000B: 9642000C: 9662000D: 96520 000
参考答案: A 本题解释: A 【解析】先计算25×80=2000,则很容易得出正确答案。
94、甲地到乙地,步行比骑车速度慢75%,骑车比公交慢50%,如果一个人坐公交从甲地到乙地共用1个半小时,问:骑车从甲地到乙地多长时间? _____
A: 10分钟B: 20 分钟C: 30分钟D: 40分钟
参考答案: B 本题解释:B。设骑车的速度为x公里/小时,则步行速度为0.25x公里/小时,公车的速度为2x公里/小时。设甲乙两地距离为L公里,则L/0.25x+L/2x=1.5,得到L/x=1/3小时=20分钟,则骑车从甲地到乙地需20分钟。
95、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:把四个数加起来,正好相当于把每个人算了3次,因此四人的作品那个岁数为(45+46+49+52)÷3=64,那么年龄最小的为64-52=12岁。
96、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
97、2007年4月20日,上证综指早盘高开11点,以3460.90点开盘后,随即逐波上扬,至终盘报收于3584.20点,较上一个交易日上涨了_____
A: 3.56%B: 11点 C: 113.70点 D: 134.30点
参考答案: D 本题解释: 【解析】较上一个交易日上涨多少应该以上个交易日收盘点数为准,所以高开的11点依然属于今天上涨的部分,故有
点。故选D。
98、林文前年买了8000元的国家建设债券,定期3年。到期他取回本金和利息一共10284.8元。这种建设债券的年利率是多少?_____
A: 9.52%B: 9.6%C: 8.4%D: 9.25%
参考答案: A 本题解释:A。【解析】求利息的公式:利息=本金×利率×时间,可得出:利率=利息÷时间÷本金。而他3年所得的利息是:10284.8-8000=2284.8(元);这样即可求出这债券的年利率是多少。(10284.8-8000)÷3÷8000=2284.8÷3÷8000=761.6÷8000=0.0952=9.52%。
99、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
100、一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?_____
A: 6秒钟B: 6.5秒钟C: 7秒钟D: 7.5秒钟
参考答案: D 本题解释:【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。