设为首页    加入收藏

公务员考试省级导航

国家 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 公务员考试1000套word版真题打包下载 公务员考试行测电子教材

行测考试大纲必考点、题库高频试题汇总-压中真题已成为一种习惯

系列重要讲话 “十四五”规划 2017年政府工作报告 2017年中央一号文件 十八大报告 中国特色社会主义理论 马克思主义哲学 马克思主义政治经济学 毛泽东思想 宪法 刑法 民法 行政法 诉讼法 合同法 婚姻法 继承法 物权法 人文常识 科技常识 常识判断 定义判断 类比推理 历史常识 逻辑判断 片段阅读 数学运算 图形推理 病句判断 选词填空 主旨概括 资料分析 时事政治

行测考点巩固-数学运算(2016年06月25日)(二)
2016-06-25 23:30:26 来源:91考试网 作者:www.91exam.org 【
微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!

1、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?_____
A: 8元B: 10元C: 12元D: 15元
参考答案: C 本题解释:C解析:盈亏总额为0.5×8+1.2×6=11.2(元),单价相差1.2-0.5=0.7(元),所以共可买乙种卡11.2÷0.7=16(张)。妈妈给了红红0.5×(16+8)=12(元)。故本题正确答案为C。



2、某高校组织了篮球比赛。其中机械学院队、外语学院队、材料学院队和管理学院队被分在同一个小组,每两队之间进行一场比赛且无平局。结果机械学院队赢了管理学院队,且机械学院队、外语学院队和材料学院队胜利的场数相同,则管理学院队胜了多少场?_____
A: 3B: 2C: 1
参考答案: D 本题解释:正确答案是D,全站数据:本题共被作答1次,正确率为100.00%解析首先按照排列组合的知识,4支队伍两两比赛,应该一共需要进行C(2,4)=6场比赛。由于机械、外语、材料三个学院胜利的场次一样,且不能为0(因为机械赢了管理,所以至少赢1场以上),所以三个学院只能胜1或2场。如果三个学院都仅胜1场,则余下的管理学院需要胜3场(即不败),与题干相冲突。所以三个学院只能都胜2场,管理学院胜0场,满足条件。故正确答案为D。速解本题属于排列组合的知识作为限制条件,核心解题技巧是从关键信息出发,通过假设法排除错误选项。考点排列组合问题笔记编辑笔记



3、某部队战士排成了一个6行、8列的长方阵。现在要求各行从左至右1,2,1,2,1,2,1,2报数,再各列从前到后1,2,3,1,2,3报数。问在两次报数中,所报数字不同的战士有_____。
A: 18个B: 24个C: 32个D: 36个
参考答案: C 本题解释:正确答案是C考点计数模型问题解析标签画图分析



4、有甲、乙两只装满水的圆柱形玻璃杯,杯的内半径分别是5厘米、8厘米,甲杯中此前放一铁块,当取出此铁块时,甲杯中的水位下降了3厘米,然后将此铁块放入乙杯中。这时乙杯中的水位上升了多少厘米?_____
A: 4厘米B: 1厘米C: 0.5厘米D: 0厘米
参考答案: D 本题解释:正确答案是D考点几何问题解析因为乙杯已经装满水,所以无论加入什么,乙杯的水位都不会发生变化。故正确答案为D。



5、某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%。问:此人盈利或亏损的情况如何?_____
A: 挣了8元B: 亏了8元C: 持平D: 亏了40元
参考答案: B 本题解释:正确答案是B考点盈亏问题解析两枚古币的成本为96÷(1+20%)+96÷(1-20%)=80+120=200,因此此人亏损了200-96-96=8元,故正确答案为B。



6、一条环形赛道前半段为上坡,后段为下坡,上坡和下坡的长度相等,两辆车同时从赛道起点出发同向行驶,其中A车上、下坡时速相等,而B车上坡时速比A车慢20%,下坡时速比A车快20%,问A车跑到第几圈时两车再次齐头并进?_____
A: 23B: 22C: 24D: 25
参考答案: D 本题解释:正确答案是D考点行程问题解析设A车速度为v,则B车上坡速度为0.8v,B车下坡速度为1.2v。上坡和小坡距离相等,套用等距离平均速度公式可知B车完成一圈的平均速度为(2×0.8v×1.2v)/(0.8v+1.2v)=0.96v。则A车与B车的速度之比为v:0.96v=25:24。也就是说当A车行驶25圈时,B车行驶24圈,此时A、B再次齐头并进,故正确答案为D。标签等距离平均速度模型



7、甲、乙、丙、丁和小强五位同学一起比赛象棋,每2人都要比赛1盘,到现在为止,甲已经赛了4盘,乙已经赛了3盘,丙赛了2盘,丁赛了1盘。问小强赛了几盘?_____ B: 4C: 2D: 5
参考答案: C 本题解释:参考答案:C题目详解:五位同学的比赛关系如上图所示:甲已经赛了4盘可知:甲和所有人都比赛过;根据丁赛了1盘可知:丁只和甲比赛了一场;根据乙已经赛了3盘可知:乙与甲、丙、小强各比赛了一场;根据丙赛了2盘可知:丙和甲、乙各比赛了一场;故小强和甲、乙各比赛了一场。所以,选C。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛



8、一个游泳池,甲管注满水需6小时,甲、乙两管同时注水,注满要4小时。如果只用乙管注水,那么注满水需_____小时。
A: 14B: 12C: 10D: 8
参考答案: B 本题解释:正确答案是B考点工程问题解析解析1:该题为工程问题,直接赋值求解,甲单独完成注水,时间为6小时,甲和乙共同注水时间是4小时,取最小公倍数为12作为总工程量。则甲和乙一起注水4小时,甲完成的工作量12×4/6=8,乙完成的工作量为12-8=4份,乙每小时完成1份工作量,单独注水需要12个小时完成12份工作量。故正确答案为B。解析2:该问题为工程问题,可以比例转化求解。赋值工程量为6,甲单独注水时间为6,甲乙同注水4小时,甲完成的工程量是6×4/6=4,则乙完成的工程量是6-4=2,则甲乙效率比为2:1,单独注水时间比为1:2。则乙单独注水需要12小时。标签比例转化



9、某机关单位召开一次会议预期12天,后因会期缩短4天,因此原预算费用节约了一部分。其中生活费一项节约了4000 ,比原计划少用40%,生活费预算占总预算的4/9,则总预算为_____。
A: 45000元:B: 35000元C: 27500元D: 22500元
参考答案: D 本题解释:D【精析】生活费比计划少用40%,因此计划中的生活费为4000÷40%=10000元。该项费用占总预算的9/4因此总预算为10000×9/4=22500元。



10、连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,则正八面体的体积为_____立方厘米。
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点几何问题解析秒杀技该正八面体可看成上下两个正四棱锥组成,注意到每个四棱锥的底面面积为正方体底面面积的一半,每个四棱锥的高为立方体棱长的一半,因此可知每个四棱锥的体积为正方体体积的1/12,故该正八面体体积为正方体体积的1/6,于是其体积为1/6×6^3=36。



11、地铁工程在某1000米路段地下施工,两头并进,一侧地铁盾沟机施工,每天掘进3米,工作5天,休息一天进行检修;另一侧工人轮岗不休,每天掘进1米,多少天此段打通_____
A: 282B: 285C: 286D: 288
参考答案: C 本题解释:【答案】C。解析:一侧工程队6天挖3×5=15米,另一侧工程队6天挖6米,以6天为一个周期,两个工程队一个周期一共挖了21米,1000米的路段一共需要1000÷21=47…13。一共需要47个整周期,还余13米,两侧工程队一起挖还需要4天,所以一共需要47×6+4=286天。



12、某公司要买100本便签纸和100支胶棒,附近有两家超市。A超市的便签纸0.8元一本,胶棒2元一支且买2送1。B超市的便签纸1元一本且买3送1,胶棒1.5元一支,如果公司采购员要在这两家超市买这些物品,他至少要花多少元钱?_____
A: 183.5B: 208.5C: 225D: 230
参考答案: B 本题解释:正确答案是B考点经济利润问题解析先考虑便签,A超市0.8元一本,而B超市3元4本(平均每本0.75元),因此100本便签可全部在B超市购买,花费25×3=75元。再考虑胶棒,A超市为4元3支(平均每支为1.33元),B超市为1.5元一支,因此胶棒尽可能多的在A超市购买,可购买99支,花费99÷3×4=132元,剩余的一支改在B超市购买,花费1.5元。总共需要75+132+1.5=208.5元。因此正确答案为B。



13、_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析将各项直接代入检验,只有B项符合,(21-5)/(29-5)=16/24=2/3,故正确答案为B。标签直接代入



14、甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人_____
A: 680B: 840C: 960D: 1020
参考答案: A 本题解释:【答案】A。解析:设甲厂技术人员有x,则乙厂有9x/8,两厂共有17x/8,即两厂总人数是17的倍数,选项中只有A、D符合。代入可知A符合题意。



15、(2006广东上,第14题)有一个灌溉用的中转水池,-直开着进水管往里灌水,-段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用l6分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?_____
A: 5台B: 6台C: 7台D: 8台
参考答案: B 本题解释:参考答案:B题目详解:依题意:设原有水量为;单位时间进水量即自然增长速度为;计划用10分钟将水排完,需要的抽水机数量即消耗变量3为N;代入公式:所以,选B。考查点:数量关系>数学运算>特殊情境问题>牛儿吃草问题>标准型牛儿吃草问题



16、小王和小张各加工了10个零件,分别有1个和2个次品。若从两人加工的零件里各随机选取2个,则选出的4个零件中正好有1个次品的概率为_____。
A: 小于25%B: 25%-35%C: 35%-45%D: 45%以上
参考答案: C 本题解释:正确答案是C,全站数据:本题共被作答1次,正确率为100.00%解析由于只有1个次品,那么次品归属为谁,就应该分两种情况讨论。第一种情况,次品为小王的。那么从小王的9个正品选1个再从1个次品中选一个有C(1,9)×C(1,1)=9种情况,从小李的8个正品中选2个有C(2,8)=28种情况,两者相乘为252;第二种情况,次品为小李的。那么从小李的8个正品选1个再从2个次品中选一个有C(1,8)×C(1,2)=16种情况,从小王的9个正品中选2个有C(2,9)=36种情况,两者相乘为576;所以最终将2种情况相加得到828种情况。再计算总的情况,每人都从10个里面取2个有C(2,10)=45种情况,所以两者相乘一共有45×45=2025中情况,最后用828÷2025,估算得到C。故正确答案为C。速解本题主要考察排列组合的分类计算的思想。对于概率问题,一般都是用:(满足条件的特点排列组合数)÷(全部情况的排列组合数)考点排列组合问题概率问题笔记编辑笔记



17、甲、乙两包糖的质量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的质量比变为7∶5,那么两包糖质量的总和是多少克?_____
A: 32B: 46.213C: 48.112D: 50
参考答案: B 本题解释:B[解析]在10克糖未取出前,甲包糖占总质量的45,从甲包取出10克放入乙包后,甲包糖占总质量的712,这就是说比原来减少了45-712=1360,这正好是10克糖对应的份数,这也就是说10克糖占总质量的1360,故总质量是10÷13/60=600/13=46.213(克)故本题应选B。



18、现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有_____。
A: 27人B: 25人C: 19人D: 10人
参考答案: B 本题解释:参考答案:B题目详解:解法一:A={{物理实验做正确的人}};B={{化学实验做正确的人}}={{至少做对一种的人数}};={{两种实验都做对的人}}根据容斥原理可得:,代入得:。则,所以,选B。解法二:由题意知,两种试验都做错的有4人,则至少做对一种的有46人。而题目已经告知有40人做对物理实验,则说明有6人只做对化学试验。同时有31人作对化学试验,则说明有15人只做对物理实验而做错了化学实验。所以题目的解答为:50-4(全做错)-15(物理对化学错)-6(化学对物理错)=25人。所以,选B。考查点:数量关系>数学运算>容斥原理问题>两个集合容斥关系



19、十几个小朋友围成一圈,按顺时针方向一圈一圈地循环报数。如果报1和报100的是同一人,那么共有多少个小朋友?_____
A: 10B: 11C: 13D: 15
参考答案: B 本题解释:参考答案:B题目详解:代入法,,符合题意考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理



20、某企业组织80名员工一起去划船,每条船乘客定员12人,则该企业最少需要租船_____条。
A: 7B: 8C: 9D: 10
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析80÷12=6……8,6条船不够,至少7条。故正确答案为A。



21、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱,如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了_____。
A: 27角6分B: 26角4分C: 25角5分D: 26角6分
参考答案: A 本题解释:参考答案:A题目详解:解法一:根据题意,由于甲比乙多交的96分,既不是20的倍数也不是9的倍数,因此,甲比乙多交的电费应由每度9分和每度2角两部分构成,即,故甲超过标准用电量3度,需要交分。因此,选A,解法二:根据某月甲比乙多交了9.6角可知,该月甲用电量必超过24度,而乙没有超过标准用电量,假设甲用电量为,乙用电量为y,则因为360,9能被3整除,,有=27,30……当=27时,=20,正确,因此,甲需要交分。因此,选A考查点:数量关系>数学运算>特殊情境问题>分段计算问题



22、某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲 B: 乙 C: 丙 D: 甲或乙
参考答案: B 本题解释:【解析】B。假设都运到甲仓库,供需运费为90×(4×3+2×4)=1800元,若均运到乙仓库,则需运费90×(5×1+2×3)=990元,若运到丙仓库,则需运费90×(5×4+4×3)=2820元,所以应该将货物运到乙仓库。



23、甲、乙两人由于顺路搭乘同一辆出租车,甲做了4公里后下了车,出租车又走了6公里,乙下车并付了18元车费,如果由两人分摊,甲应分摊多少元?_____
A: 3元B: 3.6元C: 7.2元D: 7.5元
参考答案: B 本题解释:正确答案是B考点行程问题解析因为出租车一共行驶10公里,车费18元,所以每公里车费为1.8元,因此前4公里车费为4×1.8=7.2元,所以甲应支付7.2/2=3.6元。故正确答案为B。



24、一个数列为1,-1,2,-2,-1,1,-2,2,1,-1,2,-2…………则该数列的第2009项为_____
A: -2B: -1C: 1D: 2
参考答案: C 本题解释:参考答案:C题目详解:观察数列可知:该数列每8项为一组,为1,-1,2,-2,-1,1,-2,2,;而后不断循环;要求出第2009项数值,必须知道2009项在这一组中位于第几位:即200÷8=251…………1,即2009在第252组中位于第一位,即为1;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理



25、某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有_____人。
A: 57B: 73C: 130D: 69
参考答案: A 本题解释:【解析】68+62+12-85=57人。



26、学校安排学生住宿,每个房间住6人还有2个空房间,如果每个房间住5人,则有1个房间里住的是3人,问:学校共有( )个房间?
A: 8B: 9C: 10D: 11
参考答案: C 本题解释:C【解析】假设学校有学生χ人,有房间y间,所以有6(y-2)=χ,5y-2=χ,由此可以得至χ=48,y=10。



27、某单位购买了10台新电脑,计划分配给甲、乙、丙3个部门使用。已知每个部门都需要新电脑,且每个部门最多得到5台,那么电脑分配方法共有_____种。
A: 9B: 12C: 18D: 27
参考答案: C 本题解释:正确答案是C考点排列组合问题解析标签分类分步



28、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0?5元运输费,则最少需要运费_____。
A: 4500元B: 5000元C: 5500元D: 6000元
参考答案: B 本题解释:[解析]正确答案为B。根据题意,一至五号仓库为依次排列,最有效的货物集中方式为把一和二号仓库中的货物集中到五号仓库中,则总费用为0.5×(300×20+400×10)=5000元,所以选择B项。



29、甲乙两人从相距1350米的地方,以相同的速度相对行走,两人在出发点分别放下1个标志物。再前进10米后放下3个标志物。前进10米放下5个标志物,再前进10米放下7个标志物,以此类推。当两个相遇时,一共放下了几个标志物?_____
A: 4489B: 4624C: 8978D: 9248
参考答案: D 本题解释:参考答案题目详解:解法一:,相遇时每人走了675米,就是每人有67个10米放下球,原点第1个球为第1项,第一个10米就是第二项,总共68项解法二:相遇时每人行走了675米,最后一次放标志物是在第670米处,放了个,所有标志物个数是。考查点:数量关系>数学运算>计算问题之算式计算>数列问题>数列求和>单一数列求和>等差数列求和



30、某办公室5人中有2人精通德语。如从中任意选出3人,其中恰有1人精通德语的概率是多少?_____
A: 0.5B: 0.6C: 0.7D: 0.75
参考答案: B 本题解释:【答案】B。



31、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。在尚未统计的选票中,甲至少再得_____票就一定当选。
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:正确答案是B考点统筹规划问题解析设甲还要得到x张,乙和甲票数最接近,考虑最糟糕的情况,剩余30张除了投给甲,其他全投给乙,则应有15+x>10+(30-x),x>12.5,满足条件的最小值为13。故正确答案为B。秒杀技前30张票中,甲比乙多5票,则剩余30票中先补5票给乙使两者相等,还剩25张票,甲只能能获得其中的13张票就一定能当选。



32、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。



33、某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额_____。
A: 多1000元B: 少1000元C: 多10%D: 少10%
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。标签逆向考虑



34、已知ab+6=c,其中a和b都是小于1000的质数,c是偶数,那么c的最大的数值是多少?_____
A: 1500B: 1600C: 2000D: 2100
参考答案: C 本题解释:参考答案:C题目详解:因为和c是偶数,加数中6是偶数:所以ab的积也是一个偶数;因为两个都是质数:所以当中必有一个是2;要想使得和c最大:那么另一个质数就必须是小于1000的最大的质数997;所以c=2×997+6=2000;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>质合性



35、一个自然数,被7除余2,被8除余3,被9除余1,1000以内一共有多少个这样的自然数?_____
A: 5B: 2C: 3D: 4
参考答案: B 本题解释:参考答案:B题目详解:7、8的最小公倍数为56,根据"差同减差,公倍数做周期"可知:所有满足条件的数可表示为56n-5,也就是除以56余5;要让所有56n-5中满足被9除余1:最小数是n=3时:;因此,满足条件的就是:;1000以内,即0≤504n+163≤999,;所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理



36、100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22B: 21C: 24D: 23
参考答案: A 本题解释:正确答案是A考点多位数问题解析要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。



37、两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。问:该扶梯共有多少级可看见的梯级?_____
A: 130B: 140C: 150D: 160
参考答案: C 本题解释:参考答案:C题目详解:依题意:设可看见的扶梯有x级;扶梯速度为y级/秒;代入公式:,解得x=150;所以,选C。考查点:数量关系>数学运算>特殊情境问题>牛儿吃草问题>标准型牛儿吃草问题



38、_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点几何问题解析



39、某公司举办年终晚宴,每桌安排7名普通员工与3名管理人员,到最后2桌时,由于管理人员已经安排完毕,便全部安排了普通员工,结果还是差2人才刚坐满,已经该公司普通员工数是管理人员的3倍,则该公司有管理人员_____名。
A: 24B: 27C: 33D: 36
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析设有管理人员的共有x桌,则管理人员共有3x人,从而普通员工共有9x人,则有9x=7x+18,解得x=9,所以管理人员共有27人。故正确答案为B。



40、从一副完整的扑克牌中,至少抽出_____张牌,才能保证至少6张牌的花色相同。
A: 21B: 22C: 23D: 24
参考答案: C 本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。



41、某市规定,出租车合乘部分的车费向每位乘客收取显示费用的60%,燃油附加费由合乘客人平摊。现有从同一地方出发的三位客人合乘,分别在D、E、F点下车,显示的费用分别为10元、20元、40元,那么在这样的合乘中,司机的营利比正常(三位客人是一起的,只是分别在上述三个地方下车)多_____。
A: 1元B: 2元C: 10元D: 12元
参考答案: C 本题解释:正确答案是C考点分段计算问题解析第一位下车客人为合乘,涉及金额为10元;第二位下车客人为合乘,涉及金额为20元;第三位下车客人合乘部分涉及金额20元,独乘部分涉及金额为20元;所以实际营利为10×60%+20×60%+20×60%+20=50元,比正常多50-40=10元。故正确答案为C。标签分类分步



42、A、B是一圆形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完多远?_____
A: 3360米B: 6圈C: 3320米D: 6圈340米
参考答案: D 本题解释:参考答案题目详解:甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了100×3=300米,此时甲差60米跑一圈,则可得0.5圈是300-60=240米,一圈是2×240=480米。第一次相遇时甲跑了240-100=140米,以后每次相遇甲又跑了140×2=280米,所以第十二次相遇时甲共跑了140+280×11=3220=6圈340米。考查点:数量关系>数学运算>行程问题>相遇问题>环线相遇问题>环线多次相遇问题



43、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中至少有多少名学生是同年同月出生的?_____ B: 1C: 2D: 3
参考答案: C 本题解释:参考答案:C题目详解:解法一:把同年同月的放在一组里面,那么每一组可以作为1个“抽屉”;因此,可以构成3×12=36个“抽屉”,40÷36=1…4;由抽屉原理1可以得到,至少有2名学生是同年同月出生的。解法二:这40名同学的年龄最多相差36个月(三年),因40=1×36+4,故必有2人是同年、同月出生的。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1



44、小陈家住在5楼,他每天上下楼各一次,共需走120级楼梯。后来小陈家搬到同一栋楼的8楼,如果每层楼的楼梯级数相同,则他搬家后每天上下楼一次共需走楼梯_____级。
A: 168B: 192C: 210D: 240
参考答案: C 本题解释:正确答案是C考点计数模型问题解析住在5楼,需要走5-1=4层楼梯,住在8楼,修要走8-1=7层楼梯,每层楼梯级数不变,则可得120÷4×7=210级。故正确答案为C。



45、某月的最后一个星期五是这个月的25号,这个月的第一天是星期几?_____
A: 星期二B: 星期三C: 星期四D: 星期六
参考答案: A 本题解释:A 【解析】因为25=3×7+4,所以这个月的4号也是星期五,故这个月的第一天是星期二。



46、⊙b=4a+3b,若5⊙(6⊙x)=110,则x的值为_____。
A: 5B: 4C: 3D: 2
参考答案: D 本题解释:正确答案是D考点计算问题解析按照新定义运算展开,得4×5+3×(4×6+3x)=110,解得x=2。



47、一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘到其余各辆旅游车上,已知每辆车上最多能乘坐32人。请问该单位共有多少员工去了泰山?_____
A: 269B: 352C: 478D: 529
参考答案: D 本题解释:D。开走一辆空车,则剩余22+1=23人,需要把23人平均分配到剩余的旅游车上。23的约数只有23和1,而每辆车最多能乘坐32人,排除将23人分配到1辆车上的情况(22+23>32),只能每辆车上分配1人,分配后每辆车有22+1=23人。进行条件转换,如果没有开走那辆车,那么每辆车分配23人,还少23人,加上已有条件“每辆车上乘坐22人,结果有1人无法上车”,就转化成了常规的盈亏问题。有车(1+23)÷(23-22)=24辆。有员工24×22+1=529人。



48、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有_____。
A: 22人 B: 28人C: 30人D: 36人
参考答案: A 本题解释:【解析】A。解答此题的关键在于弄清楚题中的数字是怎样统计出来的。一个人喜欢三种中的一种,则只被统计一次;一个人如喜欢两种,则被统计两次,即被重复统计一次;一个人如喜欢三种,则被统计三次,即喜欢看球赛、电影和戏剧的人数中都包括他,所以他被重复统计了两次。总人数为100,而喜欢看球赛、电影和戏剧的总人次数为:58+38+52=148,所以共有48人次被重复统计。这包括4种情况:(1)12个人三种都喜欢,则共占了36人次,其中24人次是被重复统计的;(2)仅喜欢看球赛和戏剧的,题中交待既喜欢看球赛又喜欢看戏剧的共有18人,这个数字包括三种都喜欢的12人在内,所以仅喜欢看球赛和戏剧的有6人,则此6人被统计了两次,即此处有6人次被重复统计;(3)仅喜欢看电影和戏剧的,题中交待既喜欢看电影又喜欢看戏剧的有16人,这个数字也应包括三种都喜欢的12人在内,所以仅喜欢看电影和戏剧只有4人,即此处有4人被重复统计。(4)仅喜欢看球赛和电影的,此类人数题中没有交待,但我们可通过分析计算出来。一共有48人次被重复统计,其中三种都喜欢的被重复统计了24人次,仅喜欢看球赛和戏剧的被重复统计了6人次,仅喜欢看电影和戏剧的被重复统计了4人次,则仅喜欢看球赛和电影的被重复统计的人次数为:48-24-6-4=14,这也就是仅喜欢球赛和电影的人数。一共有52人喜欢看电影,其中12人三种都喜欢,4人仅喜欢看电影和戏剧两种,14人仅喜欢看球赛和电影两种,则只喜欢看电影的人数为:52-12-4-14=22。



49、一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?_____
A: 12B: 8C: 6D: 4
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。



50、某服装店老板去采购一批商品,其所带的钱如果只买某种进口上衣可买120件,如果只买某种普通上衣则可买180件。现在知道,最后该老板买的进口上衣和普通上衣的数量相同,问他最多可以各买多少件?_____
A: 70件B: 72件C: 74件D: 75件
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析根据题意,设钱数为360元,则进口上衣3元,普通上衣2元,因此可以各买360÷(3+2)=72件。



51、从装满1000克浓度为50%的酒精瓶中倒出200克酒精,再倒入蒸馏水将瓶加满。这样反复三次后,瓶中的酒精浓度是多少_____
A: 22.5%B: 24.4%C: 25.6%D: 27.5%
参考答案: C 本题解释:【解析】C。每次操作后,酒精浓度变为原来的,因此反复三次后浓度变为。



52、(2008广东,第6题)一项任务甲做要半小时完成,乙做要45分钟完成,两人合作需要多少分钟完成?_____
A: 12B: 15C: 18D: 20
参考答案: C 本题解释:参考答案:C题目详解:根据题意,设工作总量为“1”,则有:甲每分钟完成任务的,乙每分钟完成任务的,合作完成时间为。因此,选C。考查点:数量关系>数学运算>工程问题>合作完工问题



53、今有桃95个,分给甲、乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲、乙两组分到的好桃共有_____个。
A: 63B: 75C: 79D: 86
参考答案: B 本题解释:【解析】由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9χ个,乙组分到16y个,则9χ+16y=95。可以得到χ=7,y=2,则甲、乙两组分到的好桃共有9×7×(1-2/9)+16×2×1-3/16)=75(个)。故选B。



54、在一个口袋中有lO个黑球、6个白球、4个红球.至少从中取出多少个球才能保证其中有白球? _____
A: 14B: 15C: 17D: 18
参考答案: B



55、一个圆形牧场面积为3平方公里,牧民骑马以每小时18公里的速度围着牧场外沿巡视一圈,约需多少分钟?_____
A: 12B: 18C: 20D: 24
参考答案: C 本题解释:正确答案是C考点几何问题解析



56、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?_____
A: 10B: 8C: 6D: 4
参考答案: B 本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。



57、某天办公桌上台历显示的是一周前的日期,将台历的日期翻到今天,正好所翻页的日期加起来是168,那么今天是几号?_____
A: 20B: 21C: 27D: 28
参考答案: D 本题解释:正确答案是D考点数列问题解析一周的日期成等差数列,则中位数为168÷7=24,因此这一周的日期分别为21、22、23、24、25、26、27,因此今天是28号。故正确答案为D。



58、甲、乙两仓库各放有集装箱若干个,第一天从甲仓库移出和乙仓库集装箱总数同样多的集装箱到乙仓库,第二天从乙仓库移出和甲仓库集装箱总数同样多的集装箱到甲仓库,如此循环,则到第四天后,甲乙两仓库集装箱总数都是48个,问甲仓库原来有多少个集装箱?_____
A: 33B: 36C: 60D: 63
参考答案: D 本题解释:正确答案是D考点趣味数学问题解析逆向考虑即可,从第四天起向前逆推,甲48、乙48→甲24、乙72→甲60、乙36→甲30、乙66→甲63、乙33(此为第一天移动前),则甲仓库原来有63个集装箱。故正确答案为D。秒杀技根据题意可知甲仓库显然比乙仓库多,否则不能相互搬运,故排除A、B;代入60,第一次搬运:甲24、乙72,第二次搬运:甲48、乙48,显然不符合题意,排除C。故正确答案为D。



59、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训? _____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:【解析】D。本题可直接看出答案,乙教室一次45人,共有1290人,所以乙次数一定为偶数,又因为一共27次,所以甲一定为奇数,直接选15。



60、将1~9九个自然数分成三组,每组三个数,第一组三个数之积是48,第二组三个数之积是45,三组数字中数字之和最大是多少?_____
A: 15B: 17C: 18D: 20
参考答案: C 本题解释:【答案】C。解析:显然要对48和45进行乘法拆分,显然45的可拆分情况较少,故先拆分45=1×5×9,由此可知48=2×3×8=2×4×6两种拆分情况,由此可知第三组三个数对应48的拆分也有两种情况:4、6、7;3、7、8。于是可知三组数字中加和最大的一组为3、7、8,加和为18。故正确答案为C。



61、今年祖父的年龄是小明年龄的6倍,几年后,祖父年龄是小明的5倍,又过几年以后,祖父的年龄是小明年龄的4倍。祖父今年是多少岁?_____
A: 60B: 72C: 84D: 92
参考答案: B 本题解释:参考答案:B题目详解:由于祖父与小明的年龄差是固定不变的,由条件又可以推出,这个年龄差分别是5倍的数,4倍的数,3倍的数,即5、4、3的最小公倍数。所以小明的年龄为:5×4×3÷(6-1)=12(岁)。故祖父的年龄为60+12=72(岁)。所以,选B。考查点:数量关系>数学运算>特殊情境问题>年龄问题



62、31.21×16+3.121×120﹢312.1×6.2的值是_____。
A: 3121B: 2808.9C: 4125D: 3768
参考答案: B 本题解释:正确答案是B解析原式=31.21×(16+12+62)=31.21×90=312.1×9,观察式子可知,结果是小数,故正确答案为B。计算问题



63、某论坛邀请了六位嘉宾,安排其中三人进行单独演讲,另三人参加圆桌对话节目。如每位嘉宾都可以参加演讲或圆桌对话,演讲顺序分先后且圆桌对话必须安排在任意两场演讲之间,问一共有多少种不同的安排方式?_____
A: 120 B: 240 C: 480 D: 1440
参考答案: B 本题解释:【解析】B。排列组合。240;先从六个人中选三个参加演讲,这三个全排列,再插孔法放入两个对话节目。



64、某企业有甲、乙、丙三个部门,已知三个部门员工的人数比为4:5:6,平均年龄是34岁,甲部门员工的平均年龄是30岁,丙部门员工的平均年龄是20岁。问乙部门员工的平均年龄是多少岁?_____
A: 45B: 48C: 51D: 54
参考答案: D 本题解释:D.【解析】这是一道加权平均数问题。设乙部门员工的平均年龄为x岁,则有<p>具体计算时,x=54。因此,本题的正确答案为D选项。



65、某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?_____。
A: 25B: 30C: 50D: 35
参考答案: D 本题解释:【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。



66、去超市购买商品,如果购买9件甲商品,5件乙商品和1件丙商品一共需要72元。如果购买13件甲商品,7件乙商品和1件丙商品一共需要86元。若甲、乙、丙三种商品各买2件,共需要多少钱?_____
A: 88B: 66C: 58D: 44
参考答案: A 本题解释:正确答案是A考点不定方程问题解析解析1:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72,13A+7B+C=86,这是一个不定方程,可设A=0,容易解出B=7,C=37,则2(A+B+C)=88(元),故正确答案为A。解析2:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72①,13A+7B+C=86②,两个方程相减得2A+B=7③,①+②-11③=B+2C=81,故(2A+B)+(B+2C)=7+81=2A+2B+2C=88(元),故正确答案为A。



67、任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?_____ B: 1C: 2D: 3
参考答案: B 本题解释:参考答案:B题目详解:解法一:采用特殊值法:取64,,最后结果是1;取55,变成偶数,按照题目要求计算后,最后结果是1;所以,选B。解法二:采用排除法:若为:最后结果显然不能为0,(在本题中通过乘除之后结果不可能为0);若为2:按题意,需再计算一次,得到1;若为3:需继续运算,最后结果也将是1。所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性



68、药厂使用电动研磨器将一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手动研磨器进行辅助作业。他估算如果增加2台,可在晚上8点完成,如果增加8台,可在下午6点完成。问如果希望在下午3点完成,需要增加多少台手工研磨器?_____
A: 20B: 24C: 26D: 32
参考答案: C 本题解释:【答案】C。解析:设原有电动研磨器为N台,需要增X台手工研磨器,根据牛吃草公式有:Y=(N+2)10;Y=(N+8)8,解得N=22,Y=240;代入Y=(N+X)5解得X=26,故选择C选项。



69、一本100多页的书,被人撕掉了4张.剩下的页码总和为8037。则该书最多有多少页_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉四张纸的页码数之和是偶数,由剩下页码数是奇数可知总的页码数是奇数,排除B、D。若为C,则撕掉的页码数之和是138×(138+1)÷2—8037=1554>138×8,矛盾。A项符合题意。



70、若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625B: 841C: 1024D: 1369
参考答案: B 本题解释:【答案】B。解析:根据方阵公式:最外层人数=4×最外层每边人数﹣4可知:由外到内第二层每排的学生数=(104+4)÷4=27个;最外一层每排有学生=27+2=27+2=29个;所以该方阵共有学生:29×29=841个,故正确答案为B。



71、甲、乙、丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余各捐11册,乙班有1人捐6册,有3人各捐8册,其余各捐10册,丙班有2人捐4册,6人各捐7册,其余人各捐9册。已知甲班捐书总数比乙班多28册,乙班比丙班多101册,各班捐书总数在400~550册之间。那么,甲、乙、丙三个班各有多少人?_____
A: 48、50、53B: 49、51、53C: 51、53、49D: 49、53、51
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析甲班比丙班多28+101=129册,则甲班总数在529—550之间;甲班为6+2×7+11n=20+11n,多捐2册就能被11整除,所以甲班总数只能是548(550-2)或537,因此丙班是419或408;丙班为2×4+6×7+9m=50+9m,多捐4册就能被9整除。因此丙班捐了419本,则丙班有(419-50)&divide;9+8=49人,故正确答案为C。



72、有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用_____
A: 19天B: 18天C: 17天D: 16天
参考答案: A 本题解释:【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。



73、一批木材全部用来加工桌子可以做30张,全部用来加工床可以做15张。现在加工桌子、椅子和床各2张,恰好用去全部木材的1/4。剩下的木材全部用来做椅子,还可以做多少把?_____
A: 40把B: 30把C: 25把D: 5把
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析由题意得每张桌子用这批木材的1/30,每张床用这批木材的1/15,则加工一把椅子用去木材的1/4÷2-1/30-1/15=1/40,故剩余的3/4木材还可做椅子3/4÷1/40=30把,正确答案为B。



74、有100个编号为1—100的罐子,第1个人在所有编号为1的倍数的罐子中倒入1毫升水,第2个人在所有编号为2的倍数的罐子中倒入1毫升水,……,第100个人在所有编号为100的倍数的罐子中倒入1毫升水,问此时第92号罐子中装了多少毫升的水?_____
A: 2B: 6C: 46D: 92
参考答案: B 本题解释:正确答案是B考点倍数约数问题解析分解92的质因数,可得92=2×2×23,于是可知100以内能够整除92的整数为1、2、4、23、46、92,共6个,即共有6次机会向92号罐子中注水,因此最后92号罐子中装了6毫升的水。故正确答案为B。



75、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。



76、有一个93人的参观团,其中男47人,女46人。他们住进一个旅馆内,旅馆内有可住11人、7人、4人的3种房间。要求男、女分住不同房间,且每个房间均住满,至少需要多少房间?_____
A: 11B: 10C: 13D: 17
参考答案: A 本题解释: A 解析: 设男的安排11人房间a间,7人房间b间,4人房间c间。则应满足等式11a+7b+4c=47。在这个等式中,a取尽量大的值a=3,b取最大值2,c取0。因此男的至少安排房间数为3+2+0=5(间);设女的安排11人房间d间,7人房间e间,4人房间f间,则有11d+7e+4f=46。经试验不难看出,d=1,e=5,f=0。因此女的至少安排房间数为1+5+0=6(间)。总共至少安排房间:5+6=11(间)。故本题选A。



77、参加某部门招聘考试的共有120人,考试内容共有6道题。1至6道题分别有86人,88人,92人,76人,72人和70人答对,如果答对3道题或3道以上的人员能通过考试,那么至少有多少人能通过考试?_____
A: 50B: 61C: 75D: 80
参考答案: B 本题解释:正确答案是B考点容斥原理问题解析由题意,一共做题120×6=720人次,分别答对1至6题的共有86+88+92+76+72+70=484人次,则没有答对1至6题的人次为720-484=236,当236人次中每人都答错4道题时,未通过考试的人数会最多,通过考试的人会最少,因此未通过考试的人最多为236÷4=59(人),通过考试的人数至少为有120-59=61(人),故正确答案为B。标签逆向考虑



78、三边长均为整数且最大边长为2009的三角形共有多少个?_____
A: 1008016 B: 1009020 C: 1010025 D: 2019045
参考答案: C 本题解释: C。根据三角形的构成原理,可知最大边长为2009时,另两边的和大于2009,差小于2009,则两边≤2009且≥1,则可知介于最长边与最短边之间的那条中边的长度必≥1005且≤2009。中边为1005时,另一边=1005,1种可能;中边为1006时,另一边=1004,1005,1006,共3种可能;中边为1007时,另一边=1003,1004,1005,1006,1007,共5种可能;……中边为2009时,另一边=1~2009,共2009种可能。因此三角形总和=1+3+5+…+2007+2009=1005(1+2009)/2=1010025种。所以答案为C项。



79、有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分? _____
A: 7B: 8C: 9D: 10
参考答案: B 本题解释:【答案】B 解析∶四项比赛的总得分是(5+3+2+1)×4=44分,A已得15分,最少得16分,剩下三人总得分最多为28分,要求得分最少的人得分最多且得分互不相同,则三人得分分别是8,9,11。此时一人得三项第二和一项第三,一人得一项第二和三项第三。



80、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。



81、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把这四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观游览。已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?_____ B: 1C: 2D: 3
参考答案: B 本题解释:【解析】B。根据题意,知69、85、93对A同余。由85-69=16,93-85=8,93-69=24,可推出A=8或4或2,97÷8=12……1。所以丁团分成每组A人的若干组后还剩1人。



82、从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数?_____
A: 14个B: 15个C: 16个D: 17个
参考答案: C 本题解释:正确答案是C考点多位数问题解析任意两个数之积不能被4整除,那么所取数中最多只能有一个偶数,且该偶数不能为4的倍数;共有15个奇数,所以最多可以取15+1=16个数。故正确答案为C。标签数字特性



83、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时,假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需x小时,则x满足的方程为_____。
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点行程问题解析因此正确答案为D。秒杀技在顺流或逆流的行程过程中,建立关系式时不会对时间相加减,而只能对速度相加减,因此选项A、B不符合;船在静水中的速度必然介于逆流速度和顺流速度之间,因此选项C不符合,而选项D符合。故正确答案为D。



84、



85、大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:正确答案是D考点行程问题解析两人第二次相遇时,两人共走的路程为a、b间距离的3倍,因此a、b两校相距(85+105)×12÷3=190×4=760米。标签尾数法



86、某单位有185人。在某次乒乓球比赛中。有12%的男员工和12.5%的女员工参加这次比赛。则该单位男员工有多少人?_____
A: 25B: 65C: 105D: 125
参考答案: A 本题解释:A。



87、每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?_____
A: 40分钟B: 48分钟C: 56分钟D: 64分钟
参考答案: B 本题解释:【答案解析】分别求出跑1米所用的时间。60/5000=张三,60/7000=李四,60/9000=王五。张三跑完200米要12/5分钟(2.4),李四需要12/7(1.7)分钟,王五需要4/3(1.3)分钟。张与李圈相差0.7分钟,与王相差1.1分钟,李与王差0.6分钟。得出这样的关系后可以算出张跑到第N圈时(N>4)李和王刚好也在A点,他们2.4分钟时的位移分别为:200m、282m、365m,然后求出圈差的位移82M.165M然后用200分别除以82.165,求出李需要2.44次的2.4分钟就可以再跑200米,王需要1.2次的2.4分钟,然后通分求出共需要多少个2.4分钟就行了。



88、整数64具有可被它的个位数字所整除的性质。试问在10和50之间有_____个整数具有这种性质。_____
A: 15B: 16C: 17D: 18
参考答案: C 本题解释:正确答案是C考点倍数约数问题解析个位是1、2、5的数字都可以被1、2、5整除,有4×3=12个;个位是3的数字十位必须是3的倍数才能被3整除,只有33这1个数字;个位是4的数字十位必须是偶数才能被4整除,有2个;个位是6的数字十位也必须是3的倍数,有1个;个位是7的数字十位必须能够被7整除,有0个;个位是8的数字十位必须是4的倍数,有1个。个位是9的十位必须是9的倍数,有0个。因此总共有12+1+2+1+0+1+0=17个。故正确答案为C。



89、某大型项目考察团队的所有员工年龄都在26~35岁之间,问:改考察团队至少有多少人才能保证在同一年出生的有5人?_____
A: 41B: 49C: 50D: 51
参考答案: A 本题解释:【答案】A。解析:最不利情况就是每年出生的人都有4个人,做题方法:最不利的情况数+1=4×10+1=41



90、已知一杯茶水有若干克,第一次加入一定量的水后,茶水的浓度为6%,第二次又加入同样多的水后,茶水的浓度为4%,求第三次加入同样多的水后茶水的浓度为多少?_____
A: 1%B: 2%C: 3%D: 3.5%
参考答案: C 本题解释:C【解析】设第一次加完水后,含茶6份,含水94份,这样茶水浓度就为6%,第二次加完水后,茶水总量为6÷4%=150份,所以第二次加水为150-100=50份,第三次加入的水也为50份,茶水浓度为6÷(150+50)=0.03=3%。所以,第三次加入同样多的水后茶水的浓度变为3%。故本题正确答案为C。



91、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:【解析】:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)=6÷(4/5×3/4×2/3×1/2)=6÷1/5=30(厘米)故本题选C。



92、(2005北京社招,第13题)某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院共有多少个座位?_____
A: 1104B: 1150C: 1170D: 1280
参考答案: B 本题解释:参考答案:B题目详解:解法一:根据项数公式:得首项=22。根据求和公式:选择B。[注释]因为剧院一共有25排座位,所以座位总数肯定是25的倍数,马上得出答案为B。解法二:第一排有个座位所以总座位数是个考查点:数量关系>数学运算>计算问题之算式计算>数列问题>数列求和>单一数列求和>等差数列求和



93、两棵柳树相隔165米,中间原本没有任何树,现在这两棵树中间等距种植32棵桃树,第1棵桃树到第20棵桃树间的距离是_____米。
A: 90B: 95C: 100D: 前面答案都不对
参考答案: B 本题解释:B。两棵柳树相隔165米,中间原本没有任何树,现在这两棵树中间等距种植32棵桃树,那么每两棵树之间的距离为165÷(32+2—1)=5(米),第1棵桃树到第20棵桃树间的距离是5×(20—1)=95(米)。



94、把几百个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份7个余6个。这堆苹果共有多少个?_____
A: 111B: 143C: 251D: 503
参考答案: D 本题解释:参考答案:D题目详解:此题为剩余定理中差同的情况,根据"差同减差,最小公倍数做周期"可知:即苹果数加上一个,就是7、8和9的公倍数;而7、8和9的最小公倍数是504,正好在几百的范围内:因此这堆苹果有个;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>特殊形式>差同



95、两个人做一种游戏:轮流报数,报出的数不能超过8(也不能是0),把两个人报出的数连加起来,谁报数后,加起来的是88(或88以上的数),谁就获胜。让你先报数,你第一次报几就是一定会获胜?_____
A: 3B: 4C: 7D: 9
参考答案: C 本题解释: C【解析】 第一次报7一定会赢。以后另一个人报几,第一次报数者可以报这个数与9的差。这样一来,每一次报数都报出的数连加起来都是9的倍数加7;每一次另一个人报数以后,报出的数连加起来都不是9的倍数加7。而88除以9,余数是7,所以第一次报7者一定胜利。



96、假设五个相异正整数的平均数是15,中位数是18,则此五个正整数中的最大数的最大值可能为_____。
A: 24B: 32C: 35D: 40
参考答案: C 本题解释:参考答案:C题目详解:根据题意:5个数的平均数为15;那么这5个数的和为:。要使最大数尽量大,那么必须使小的数尽量小;设小的两个数为1和2:又因为中位数是18,那么较大的两个数之和为:;而这两个数都大于18,所以要使最大的数尽量大:那么使第二大的数为19,所以最大的数为。所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值



97、红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到队头,然后立即返回队尾,共用10分钟。求队伍的长度。_____
A: 630米B: 750米C: 900米D: 1500米
参考答案: A 本题解释:【答案】A。解析:设王老师从队尾走到队头用x分钟,可列方程(150-60)×x=(150+60)×(10-x),解得x=7分钟,则队伍的长度为(150-60)×7=630米,选择A。



98、某人登山,上山时每走30分钟,休息10分钟;下山时每走30分钟,休息5分钟;下山的速度是上山速度的1.5倍。如果下山用了2小时15分,那么上山用的时间是_____。
A: 3小时40分B: 3小时50分C: 4小时D: 4小时10分
参考答案: B 本题解释:【答案】B。解析:设上山速度是1,下山的速度是1.5,下山的时间是135分钟,那么走了4个30分钟,休息了3个5分钟,也就是走了2小时,那么路程就是1.5×2=3,上山时速度是1,时间就是3÷1=3小时,也就是走了6个30分钟,这需要休息5个10分钟,总共就用了3小时50分钟。



99、一只船沿河顺水而行的航速为30千米/小时,已知按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为_____。
A: 1千米B: 2千米C: 3千米D: 6千米
参考答案: C 本题解释:正确答案是C考点行程问题解析由题意得逆流航行的速度为30×3÷5=18千米/小时,则水速为(30-18)÷2=6千米/小时,顺水漂流半小时的航程为6×0.5=3千米,故正确答案为C。公式:水速=(顺水速度-逆水速度)÷2。标签公式应用



100、银行存款年利率为2.5%,应纳利息税20%,原存1万元1年期,实际利息不再是250元,为保持这一利息收入,应将同期存款增加到_____元。
A: 15000B: 20000C: 12500D: 30000
参考答案: C 本题解释:C。【解析】令存款为x,为保持利息不变,250=x×2.5%×(1-20%)=>x=12500。



Tags:公务员 数学运算 行测
】【打印繁体】 【关闭】 【返回顶部
下一篇公务员行测考点特训-【片段阅读】..

网站客服QQ: 960335752 - 14613519 - 791315772