微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、河道赛道长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?_____
A: 48 B: 50 C: 52 D: 54
参考答案: C 本题解释: C。
2、已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有_____。
A: 10B: 11C: 12D: 9
参考答案: B 本题解释:【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。
3、某考试均为判断题,共10题,每题10分,满分为100分。考生答题时认为正确则画为“0”。认为不正确则画“×”。以下是考生的答题情况及甲、乙、丙的实际得分,则丁的得分为_____。题号12345678910得分甲××0×0××0××0乙×000×0×0000丙×000×××0×00丁××000××0000
A: 20分B: 40分C: 60分D: 80分
参考答案: C 本题解释:【答案】C。解析:首先观察甲和丙,得分相差40分,而他们的答案不一样的出恰好有4题,那么也就是说,丙和甲不一样的题(即2,4,5,10)甲都做对了,而这四道题恰好乙也全做错了,而乙一共做错了5道题,也就是说剩下的题目(1,3,7,8,6,9)中,乙只错了一个;又四人判断一致的题目,(即1,3,7,8)中必有一个四个人全做错了,因为丙一共只做对了3道题,那么,也就是说6、9、题乙做对了,那么现在答案除了1、3、7、8都确定了,即(2,4,5,10)与甲一致,(6,9)与乙一致,在这6道题中丁做对了3道,剩下的(1,3,7,8)丁做对3道。综上所述,丁得分60分。
4、某中介服务机构根据服务项目所涉及的金额分段按一定比例收取服务费,具体标准如下:1万元(含)以下收取50元;1万元以上、5万元(含)以下的部分收取3%;5万元以上、10万元(含)以下的部分收取2%.(如某一服务项目所涉及金额为5万元时,应收取服务费1250元。)现有一服务项目所涉及金额为10万元,那么,所收取的服务费应为:_____
A: 2250元 B: 2500元 C: 2750元 D3000元
参考答案: A 本题解释:【解析】分段按比例计算,选A.
5、今有桃95个,分给甲、乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲、乙两组分到的好桃共有_____个。
A: 63B: 75C: 79D: 86
参考答案: B 本题解释:【解析】由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9χ个,乙组分到16y个,则9χ+16y=95。可以得到χ=7,y=2,则甲、乙两组分到的好桃共有9×7×(1-2/9)+16×2×1-3/16)=75(个)。故选B。
6、下列哪项能被11整除? _____
A: 937845678B: 235789453C: 436728839D: 867392267
参考答案: A 本题解释:A【解析】9+7+4+6+8=343+8+5+7=2334-23=11所以,答案是A。
7、小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?_____
A: 144B: 136C: 132D: 128
参考答案: C 本题解释:C。相遇的时候小王比小张多走了
,共用时24÷(48-40)=3小时,所以A地与B地之间的距离为48×3-12=132公里。
8、甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?_____
A: 780元B: 890元C: 1183元D: 2083元
参考答案: A 本题解释:【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
9、在直线上两个相距一寸的点A和B上各有一只青蛙,A点的青蛙沿直线跳往关于B点的对称点Al,而B点的青蛙跳往关于A点的对称点B1。然后A1点的青蛙跳往关于B1点的对称点A2,B1点的青蛙跳往关于A1点的对称点B2,如此下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多长距离?_____
A: 364寸B: 1088寸C: 1093寸D: 2187寸
参考答案: C 本题解释:C【解析】两只青蛙各跳一次,两只青蛙的距离为原来的3倍,所以跳7次后,两只青蛙的距离为A7B7=37×1=2187(寸)。而且A7在右,B7在左,由对称性可知B7A=BA7,所以BA7=
(寸),故本题正确答案为C。
10、一个9×11个小矩形组成的大矩形一共有多少个矩形? _____
A: 2376B: 1188C: 2970D: 3200
参考答案: C 本题解释:C【解析】矩形是由横向2条平行线,纵向2条平行线相互垂直构成的。9×11的格子,说明是10×12条线。所以我们任意在横向和纵向上各取2条线就能构成一个矩形。答案就是 C10取2×C12取2=2970。
11、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级 B: 100级 C: 120级 D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
12、有人将1/10表示为1月10日,也有人将1/10表示为10月1日,这样一年中就有不少混淆不清的日期了,当然,8/15只能表示8月15日,那么,一年中像这样不会搞错的日期最多会有多少天?_____
A: 221B: 234C: 216D: 144
参考答案: B 本题解释:【答案】B。解析:当日期在1-12中取值时才会混淆,其中在1月1日,2月2日,......12月12日不会混淆。共有12×12-12=132天会混淆,若是平年,则一年中不会混淆的日期会有365-132=233天,若是闰年则多一天,所以最多会有234天。
13、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: 1400C: 1120D: 1050
参考答案: D 本题解释:【答案】D。解析:主唱分25%,其余5人分75%,所以每人分15%,所以7000×l5%=1050元。
14、某单位有185人。在某次乒乓球比赛中。有12%的男员工和12.5%的女员工参加这次比赛。则该单位男员工有多少人?_____
A: 25B: 65C: 105D: 125
参考答案: A 本题解释:A。
15、有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:_____
A: 16天B: 15天C: 12天D: 10天
参考答案: A 本题解释:【答案】A。中解析:分析题意可知,张师傅作甲工程的效率较高,李师傅做乙工程的效率较高,因此李师傅做乙工程,张师傅先用6天完成甲工程,之后与李师傅异同完成乙工程,这样所需的天数最少。
16、某项工程计划300天完成,开工100天后,由于施工人员减少,工作效率下降20%,问完成该工程比原计划推迟多少天? _____
A: 40B: 50C: 60D: 70
参考答案: B 本题解释: B。根据效率与时间成反比,可得正常200天的工作,效率下降后需要200÷ (1-20%) =250天,故需推迟50天。
17、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。
18、有两根长短粗细不同的蚊香,短蚊香可燃8小时,长蚊香可燃的时间是短蚊香的1/2,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短_____。
A: 1/6B: 1/5C: 1/2D: 3/5
参考答案: D 本题解释:D【解析】两根蚊香同时点燃3小时后所剩长度相等,从这里我们可以找出长、短蚊香的长度关系:短蚊香点燃3小时后剩1-1× 3/8=5/8,长蚊香点燃3小时后剩1-(1×3)/(8×1/2)=1/4,即短蚊香的5/8等于长蚊香的1/4,由此可求出短蚊香是长蚊香的几分之几,即5/8短=1/4长,短/长=2/5,所以未点燃之前,短蚊香比长蚊香短1-2/5=3/5。
19、A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?_____
A: 9B: 25C: 49D: 81
参考答案: D 本题解释:【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
20、六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分_____。
A: 93B: 94C: 95D: 96
参考答案: C 本题解释:C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
21、一项工程,甲单独做,6天可完成;甲乙合做,2天可完成;则乙单独做,_____天可完成。
A: 1.5 B: 3 C: 4 D: 5
参考答案: B 本题解释: B。设这项工程为单位1,则甲的速度为吉,甲乙共同速度为1/2么乙的速度为1/2-1/6-1/3则乙做完这项工程需要3天。故正确答案为B。
22、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150 D154
参考答案: B 本题解释: 【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
23、一条长度为30米、宽度为3米的未划停车位的路边,最差的情况也可以停2米宽、3米长的汽车多少辆?_____
A: 5辆B: 7辆C: 8辆D: l5辆
参考答案: A 本题解释:【解析】分三种情况:第一种:汽车如果与道路垂直。每辆车的车距应尽可能的大,但距离必须小于2米(否则可以再停一辆),当两辆车的车距为2米时,最少可停(30-2)÷(2+2)=7(辆),那么最差的情况下至少可以停8辆车;第二种:汽车如果与道路平行。每辆车的车距应尽可能的大,但距离小于3米,当两辆车的车距为3米时,最少可停(30-3)÷(3+3)=4.5(辆),即停5辆。第三种:汽车与道路有平行与垂直两种情况并存,则停的汽车数量应介于5辆和8辆之间。而题干是问的最差的情况,故最少停5辆车。
24、筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10B: 10.12C: 11.16D: 13.50
参考答案: C 本题解释:【解析】:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是,720×15.5=11160(米)。故本题选C。
25、甲、乙两瓶中的混合液均是由柠檬汁、油和醋混合而成,其中甲瓶中混合液由柠檬汁、油和醋按1:2:3的体积比混合,乙瓶中混合液以3:4:5的体积比混合而成。现将两瓶中混合液混合在一起,得到体积比为3:5:7的混合液。则原来甲、乙两瓶溶液的体积比为_____。
A: 1:3B: 2:3C: 3:1D: 3:2
参考答案: D 本题解释:【答案】D。解析:
26、一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘到其余各辆旅游车上,已知每辆车上最多能乘坐32人。请问该单位共有多少员工去了泰山?_____
A: 269B: 352C: 478D: 529
参考答案: D 本题解释:D。开走一辆空车,则剩余22+1=23人,需要把23人平均分配到剩余的旅游车上。23的约数只有23和1,而每辆车最多能乘坐32人,排除将23人分配到1辆车上的情况(22+23>32),只能每辆车上分配1人,分配后每辆车有22+1=23人。进行条件转换,如果没有开走那辆车,那么每辆车分配23人,还少23人,加上已有条件“每辆车上乘坐22人,结果有1人无法上车”,就转化成了常规的盈亏问题。有车(1+23)÷(23-22)=24辆。有员工24×22+1=529人。
27、甲、乙两人进行乒乓球比赛,比赛采取三局两胜制,无论哪一方先胜两局则比赛结束。甲每局获胜的概率为2/3,乙每局获胜的概率为1/3。问甲最后取胜的概率是多少?_____
A: AB: BC: CD: D
参考答案: A
28、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D
29、某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是_____
A: 140B: 569C: 712D: 998
参考答案: D 本题解释:D。选项中只有998加上3能整除11和13,加上5能整除17。
30、某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照x%税率征收,超过6000美元的部分按y%税率征收(X、Y为整数)。假设该国某居民月收入为6500美元,支付了l20美元所得税,则Y为多少?_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:A。由题意可得方程:3000×1%+3000×X%+500×Y%=120,化简得6X+Y=18,因为X、Y均为整数,代入各选项,只有A项中Y=6符合题意。
31、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释: 【解析】D。可以采用带入法,将选项代入题干中,发现只有当最初的盐水是500克的时候才能满足要求,或者利用倒推方法解题。
32、一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是_____。
A: 9点15分B: 9点30分C: 9点35分D: 9点45分
参考答案: D 本题解释:【答案解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。
33、一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×138=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。
34、有面值为8分、1角和2角的三种纪念邮票若干张,总价值为1元2角2分,则邮票至少有_____。
A: 7张B: 8张C: 9张D: 10张
参考答案: C 本题解释:C【解析】要使邮票最少,则要尽量多的使用大面额邮票,所以要达到总价值,2角的邮票要使用4张,1角的邮票要使用1张,8分的邮票要4张,这样使总价值正好为1元2角2分,所以要用9张。
35、一只猎豹锁定了距离自己200米远的一只羚羊,以108千米/小时的速度发起进攻,2秒钟后,羚羊意识到危险,以72千米/小时的速度快速逃命。问猎豹捕捉到羚羊时,羚羊跑了多少路程?_____
A: 520米 B: 360米 C: 280米 D: 240米
参考答案: C 本题解释:【答案】C。解析:108千米/小时=30米/秒,72千米/小时=20米/秒,开始猎豹距离羚羊200米,羚羊意识到危险的时候,猎豹距离羚羊200米-30米/秒×2秒=140米。根据追击问题计算公式:速度差×追击时间=路程差,即(30-20)t=140,t=14秒,即猎豹捕捉到羚羊时,羚羊跑了14秒,路程为20×14=280米。
36、某医院内科病房有护士15人,每两人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次这两人再同值班,最长需要几天_____
A: 15B: 35C: 30D: 5
参考答案: B 本题解释:B.【解析】n×(n-1)/2=15×14/2=105,105×8/24=35。故选B。
37、小伟参加英语考试,共50道题,满分为100分,得60分算及格。试卷评分标准为做对一道加2分。做错一道倒扣2分,结果小伟做完了全部试题但没及格。他发现,如果他少做错两道题就刚好及格了。问小伟做对了几道题?_____
A: 32 B: 34 C: 36 D: 38
参考答案: D 本题解释:【答案】D。解析:少做错2道刚好及格,多做对一道多得4分,所以小伟实际得了60-2×4=52分。设作对x道,则2x-2(50-x)=52,解得x=38。
38、甲、乙、丙三人买水果,甲买了3千克苹果和2千克梨,乙买了4千克苹果和3千克梨,丙买了3千克苹果和4千克梨。乙比甲多花7元,甲比丙少花5元。问甲、乙、丙共花了多少钱?_____。
A: 92.5元B: 112.5元C: 88.0元D: 67.5元
参考答案: D
39、甲、乙、丙、丁四人步行,在同时间内甲行5步时乙可行6步;乙行7步时丙可行8步;丙行9步时丁可行10步。又甲、乙、丙、丁每步的距离之比为15∶14∶12∶10。问甲行630米时,丁可行多少米?_____
A: 640米B: 680米C: 720米D: 750米
参考答案: A 本题解释:A【解析】将四人步数之比与每步距离之比结合考虑,可推出相同时间内两人所行距离之比,并由此求出丁所行的步数。即甲∶乙=(15×5)∶(14×6)=25∶28,乙∶丙=(14×7)∶(12×8)=49∶48,丙∶丁=(12×9)∶(10×10)=27∶25。可得甲行630米时丁行(28×48×25×630)÷(25×49×27)=640米。故甲行630米时丁行640米。
40、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15 B: 13 C: 10 D: 8
参考答案: B 本题解释:【解析】B.最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
41、有3个大人、2个小孩要一次同时过河,渡口有大船、中船、小船各一只,大船最多能载1个大人、2个小孩,中船最多能载大人、小孩各1人,小船最多能载大人1人,为了安全,小孩需大人陪同,则乘船的方式有多少种?_____
A: 6B: 12C: 18D: 24
参考答案: C 本题解释:C。如果两个小孩由一个大人陪着,有3种情况,乘船的方式有3×2=6种;如果两个小孩分别由两个大人陪着,有6种情况,乘船方式有6×2=12种。故一共有6+12=18种乘船方式。
42、黑色、黄色、白色的筷子各10根摆放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,至少要拿出多少根?_____
A: 12B: 13C: 14D: 11
参考答案: B 本题解释:B 解析:最不利的情况是,取出了10根颜色相同的筷子,又从剩下的两种颜色的筷子中各取了1根,现在再任取1根,就能保证至少有两双不同颜色的筷子。即10+1+1+1=13(根)。故本题答案为B。
43、4532×79÷158的值是_____。
A: 2266B: 2166C: 2366D: 2362
参考答案: A 本题解释:【答案】A。解析:4532×79÷158=4532÷(158÷79)=4532÷2=2266。故正确答案为A。
44、任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?_____ B: 1C: 2D: 3
参考答案: B 本题解释:【答案】B。解析:此题可以用特值法,选择特殊值64,反复运算后得到最终结果为1。
45、某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?_____
A: 1.23B: 1.80C: 1.93D: 2.58
参考答案: D 本题解释:【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。
46、a=8.8+8.98+8.998+8.9998+8.99998,则a的整数部分是_____。
A: 45B: 44C: 43D: 42
参考答案: B 本题解释:B 【解析】因为a>8.8×5=44,a<9×5=45,所以a的整数部分是44。
47、已知29832983…298302能被18整除,那么n的最小值是_____。
A: 4B: 5C: 6D: 7
参考答案: A 本题解释:【解析】18=2×9,这个多位数的个位上是2,满足被2整除,因此,只需考虑个位数字之和能否被9整除的问题。(2+9+8+3)×n+0+2=22n+2是9的倍数,22×4+2=90=9×10,那么n的最小值为4。
48、A,B两村庄分别在一条公路L的两侧,A到L的距离|AC|为1公里,B到L的距离|BD|为2公里,C,D两处相距6公里,欲在公路某处建一个垃圾站,使得A,B两个村庄到此处处理垃圾都比较方便,应建在离C处多少公里()
A: 2.75B: 3.25C: 2D: 3
参考答案: C 本题解释:答案: C 解析:连接AB,交公路L于点E,E点就是A、B两个村庄到此处处理垃圾都比较方便的地方,三角形ACE相似于三角形BDE,则AC⊥CE=BD⊥DE,而CE+DE=6,AC=1,BD=2,解得CE=2,故应建在离C处2公里。
49、7个同学排成两排照相,前排3人,后排4人,共有_____种站法。
A: 1680B: 2400C: 2520D: 5040
参考答案: D 本题解释:【解析】相当于把7个元素放在预先指定好的7个不同位置上,因此,是7个同学的全排列,共有P77=5040种站法。
50、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。
分,该数值可以根据以上式子判定尾数为6,选择B。
51、小王工作一年酬金是1800元和一台全自动洗衣机。他干了7个月,得到560元和一台洗衣机,问这台洗衣机价钱为多少元_____
A: 1176B: 1144C: 1200D: 1154
参考答案: A 本题解释:A[解析]小王工作5个月的酬金为1800—560=1240元,因此他工作一年的酬金相当于1240÷5×12=2976元,故洗衣机相当于2976-1800=1176元。
52、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少? _____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。
53、有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分? _____
A: 7B: 8C: 9D: 10
参考答案: B 本题解释:【答案】B 解析∶四项比赛的总得分是(5+3+2+1)×4=44分,A已得15分,最少得16分,剩下三人总得分最多为28分,要求得分最少的人得分最多且得分互不相同,则三人得分分别是8,9,11。此时一人得三项第二和一项第三,一人得一项第二和三项第三。
54、将一个正方形分成9个小正方形,填上1到9这9个自然数,使得任意一个横行,一个纵列以及每一对角线上的3个数之和等于15,请问位于中间的小正方形应填哪个数?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:答案:B【解析】欲保证3个数之和都等于15,只有中间的数字为平均数5才可。
55、一个三位自然数。把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。问这样的三位数有几个?_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B。
56、法学院200名学生,每人至少辅修法医学、心理学和经济学三项中的一项。其中,辅修法医学的学生有103人,辅修心理学的学生有129人,辅修经济学的有88人。三科全都选择的有16人。只选择法医学和心理学的有30人,只选择法医学和经济学的有7人,那么只选择心理学和经济学的学生有_____人。
A: 51B: 35C: 67D: 83
参考答案: A 本题解释:【解析】设只选择心理学和经济学的学生人数为x,根据题干要求画出关系图,通过观察可列出等式:103+129+88-30-7-x-l6×2=200,解得x=51,即有51人只选择辅修心理学和经济学。答案为A。
57、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3 B: 4 C: 5 D: 6
参考答案: C 本题解释: 【解析】C。设这个队胜了X场,可得方程3X+9-X=19,得X=5,所以此队胜了5场。
58、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级B: 100级C: 120级D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
59、一艘游轮逆流而行,从A地到B地需6天;顺流而行,从B地到A地需4天。问若不考虑其他因素,一块塑料漂浮物从B地漂流到A地需要多少天_____
A: 12天B: 16天C: 18天D: 24天
参考答案: D 本题解释:D【解析】设静水速度是X,水流速度是Y,那么可以列出方程组:1/(X-Y)=6,1/(X+Y)=4;可解得1/Y=24,即为水流速度漂到的时间。
60、两棵柳树相隔165米,中间原本没有任何树,现在这两棵树中间等距种植32棵桃树,第1棵桃树到第20棵桃树间的距离是_____米。
A: 90B: 95C: 100D: 前面答案都不对
参考答案: B 本题解释:B。两棵柳树相隔165米,中间原本没有任何树,现在这两棵树中间等距种植32棵桃树,那么每两棵树之间的距离为165÷(32+2—1)=5(米),第1棵桃树到第20棵桃树间的距离是5×(20—1)=95(米)。
61、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C[解析]6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷15=30(厘米)故本题选C。
62、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:每本书的利润值下降了20%,为原来的0.8,销量增加了70%,为原来的1.7,1.7×0.8=1.36,1.36—1=0.36,即为36%。
63、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释: 【解析】D。可以采用带入法,将选项代入题干中,发现只有当最初的盐水是500克的时候才能满足要求,或者利用倒推方法解题。
64、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:
因此最少需要180+120+82.5=382.5元。
65、在所有的两位数中,十位数字比个位数字大的两位数共有多少个?_____
A: 49B: 50C: 56D: 45
参考答案: D 本题解释:【答案】D。解析:十位是9的有9个,十位是8的有8个,……十位是1的有1个,共有:1+2+3+……+9=45个。故应选择D。
66、1898年4月1日,星期五,分别把三个钟调整到相同的时间:12点。第二天中午发现A钟时间完全准确,B钟正好快了1分钟,C钟正好慢了1分钟。现在假设三个钟都没有被调,它们保持着各自的速度继续走而且没有停。那么到_____,三只时钟的时针分针会再次都指向12点。
A: 1900年3月20日正午12点B: 1900年3月21日正午12点C: 1900年3月22日正午12点D: 1900年3月23日正午12点
参考答案: C 本题解释:【答案】C。解析:B钟1天时间快了1分钟,C钟1天时间慢了1分钟,若他们时针分针都再次指向12点,那么,B钟总共快了12小时,同时C钟慢了12小时。那么需要的时间为60×12=720天,由此,此题变成1898年4月1日的720天后是几月几日的问题。由于1899年跟1900年都为平年,所以两年即730天后为1900年4月1日,往前数10天为3月22日,故正确答案为C。此题要注意闰年的计算方法:公元年数可被4整除(但不可被100整除)为闰年,但是正百的年数必须是可以被400整除的才是闰年,所以1900年是平年。
67、一个空的容积为64 升的鼓形圆桶上有A、B 两孔,一种蒸馏水从A 孔流入同 时从B 孔流出,如果通过A 孔的流速为3 升/小时,那么在B 孔的流速为多少升时才能保证用96 小时恰好装满容器?_____
A: 4/3 B: 8/3 C: 7/3 D: 3/7
参考答案: C 本题解释:【答案】C[解析]从A孔流入同时从B孔流出,设流速X,则容器实际蓄水速度为3-X,所以64/(3-X)=96,求出X=7/3。
68、甲乙两人参加射击比赛,规定每中一发记5分,脱靶一发倒扣3分,两人各打了10分子弹后,分数之和为52,甲比乙多得了16分,问甲中了多少发?_____
A: 9B: 8C: 7D: 6
参考答案: B 本题解释:【答案】B。解析:甲、乙分数之和为52,差为16,则甲为(52+16)÷2=34分,根据鸡兔同笼公式可得,甲中了(34+3×10)÷(5+3)=8发。
69、某日小李发现日历有好几天没有翻,就一次翻了6张,这6天的日期加起来的数字和是141,他翻的第一页是几号?_____
A: 18 B: 21 C: 23 D: 24
参考答案: B 本题解释: 【解析】B。设第一张的日期为X,则可得方程X+X+1+X+2+X+3+X+4+X+5=141,解得X=21,所以选答案B。
70、若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625B: 841C: 1024D: 1369
参考答案: B 本题解释:【答案】B。解析:根据方阵公式:最外层人数=4×最外层每边人数﹣4可知:由外到内第二层每排的学生数=(104+4)÷4=27个;最外一层每排有学生=27+2=27+2=29个;所以该方阵共有学生:29×29=841个,故正确答案为B。
71、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
72、10个连续偶数的和是以1开始的10个连续奇数和的2.5倍,其中最大的偶数是多少?
A: 34B: 38C: 40D: 42
参考答案: A 本题解释:【答案】A。解析:猜证结合,以1开始的10个连续奇数的和是250,代入答案中得A。
73、(1.2)2+(1.3)2+(1.4)2+(1.5)2的值是_____。
A: 6.30 B: 6.49 C: 7.56 D: 7.34
参考答案: D 本题解释:D。本题可采用尾数法,(1.2)2尾数为4,(1.3)2尾数为9,(1.4)2尾数为6,(1.5)2尾数为5,4+9+6+5尾数为4,所以正确答案为D项。
74、某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6 B: 8 C: 10 D: 12
参考答案: D 本题解释:D。列方程组。设学徒工、熟练工、技师分别有X,Y,Z名。则有:X+Y+Z=802X+6Y+7Z=4802X=6Y得到:X=15,Y=5,Z=60,所以Z∶Y=60∶5=12。选D。
75、A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值。分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?_____
A: 0B: 1C: 2D: 3
参考答案: C 本题解释:C【解析】不妨设A<B<C<D<E,则容易知道A+B=17,A+C=25,C+E=42,D+E=45,只要知道B+C的值就可以了。B+C只可能是剩下的28,31,34,39中之一。由于(A+B)+(A+C)+(B+C)=2(A+B+C)为偶数,而A+B和A+C都为奇数,故B+C为偶数,B+C只能是28或34;又B+C<B+D<B+E<C+E<D+E,即比B+C大的数至少有4个,故B+C不能是34或39,综合可知,B+C=28,于是可解A=7,B=10,C=18,D=21,E=24,能被6整除的数有18和24两个,选择C选项。
76、任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少? _____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:【答案】B 解析∶特殊值法,取64,按题意,最后结果为l。也可用排除法,最后结果显然不能为0;若为2,按题意,需再计算一次,得到l;若为3,需继续运算,最后结果也将是1。
77、A,B两村庄分别在一条公路L的两侧,A到L的距离|AC|为1公里,B到L的距离|BD|为2公里,C,D两处相距6公里,欲在公路某处建一个垃圾站,使得A,B两个村庄到此处处理垃圾都比较方便,应建在离C处多少公里_____
A: 2.75B: 3.25C: 2D: 3
参考答案: C 本题解释:答案: C 解析:连接AB,交公路L于点E,E点就是A、B两个村庄到此处处理垃圾都比较方便的地方,三角形ACE相似于三角形BDE,则AC⊥CE=BD⊥DE,而CE+DE=6,AC=1,BD=2,解得CE=2,故应建在离C处2公里。
78、三个单位共有180人,甲、乙两个单位人数之和比丙单位多20人,甲单位比乙单位少2人,求甲单位的人数_____
A: 48人B: 49人C: 50人D: 51人
参考答案: B 本题解释:【答案】B,列方程即可求解
79、甲、乙、丙、丁、戊共5个人,每人至少订了A、B,C、D、E这5种报纸中的一种。已知甲、乙、丙、丁分别订了2、2、4、3种报纸,而A、B、C、D这4种报纸分别有1、2、2、2个人订。那么报纸E有几个人订?_____
A: 1B: 3C: 4D: 5
参考答案: D 本题解释:D。甲、乙、丙、丁共订了2+2+4+3=11份报纸,而且戊至少订了1种报纸,所以这五个人至少订了12份报纸:A、B、C、D这4种报纸共被订了1+2+2+2=7份。所以E至少被订了12-7=5份。因为共有5个人,所以E最多能被订5份,故这五种报纸最多被订了12份。戊只能是订了1种报纸,报纸E有5个人订。
80、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?_____
A: 36B: 37C: 39D: 41
参考答案: D 本题解释:【答案】D。解析:假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。
81、某盒灯泡中有3只次品和6只正品(每只均可区分),测试员每次取出一只进行测试,直到3只次品全部测出为止。假如第三只次品在第六次测试时被发现,那么不同的测试情况共有多少种?_____
A: 43200B: 7200C: 60D: 120
参考答案: B 本题解释:B。
82、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里相会,下次相会将在_____。
A: 星期一B: 星期五C: 星期一D: 星期四
参考答案: C 本题解释:C【解析】此题乍看上去是求9,6,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,7,8的最小公倍数。既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。(10,7,8的最小公倍数是5×2×7×4=280,280÷7=40,所以下次相遇肯定还是星期二。)
83、一列快车和一列慢车相对而行,其中快车车长200米,慢车车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是_____。
A: 6秒B: 6.5秒C: 7秒D: 7.5秒
参考答案: D 本题解释:D【解析】两车相向而行,故慢车、快车相对速度均为V(快)+V(慢),慢车走的路程为快车车长200米;同理,坐在快车上看慢车,走的距离为250米。故
。
84、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?_____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
85、一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为_____
A: 3400元B: 3060元C: 2845元D: 2720元
参考答案: C 本题解释:【解析】C。八折和九折之间相差一折,即215+l25=340元,可算出原价为3400元,则进货价3400×0.9-215=2845元。
86、有下列长度的三条线段,不能组成三角形的是哪一组?_____
A: 4cm、2cm、5cmB: 12cm、14cm、8cmC: 2cm、3cm、4cmD: 6cm、2cm、3cm
参考答案: D 本题解释:D 【解析】三角形两边之和大于第三边;两边之差小于第三边。
87、一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译4小时,剩下的再由乙单独翻译,需要12小时才能完成。则这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15 B: 18 C: 20D: 25
参考答案: A 本题解释:【答案】A。解析:设总的工作量为1,则甲乙两人的工作效率和为,乙丙两人的工作效率和为。现在甲丙合作4小时,乙单独工作12小时的工作量,相当于甲乙合作4小时,乙丙合作4小时,乙再单独工作4小时的工作量。则乙工作4小时的工作量为1-×4-×4=,即乙每小时的工作量为,所以乙需要15小时完成工作。
88、200除500,商2余100,如果被除数和除数都扩大3倍,则余数是_____。
A: 100B: 200C: 300D: 100000
参考答案: C 本题解释:【解析】商不变,余数跟着扩大3倍,所以是300,选C。
89、心灵投射谬误也称为投射作用,它是一种非形式谬误,有两种形式,一种形式是某人认为他看世界的观点反映了世界的真相。也就是,某人将他的个人感觉投射到真实世界;另一种形式是某人认为自己不了解一个现象意味着这现象无法被理解或不是真的。根据上述定义,下列不属于心灵投射谬误的是_____。
A: 小李忍受不了闻臭豆腐的味道,就说臭豆腐这么臭,没人会喜欢吃B: 小敏是重庆人,到上海工作后,他发现上海菜普遍是甜的,于是他逢人就说上海菜很难吃C: 尽管知道葡萄架上的葡萄很甜,但是小刘因为摘不到,就对别人说葡萄很酸D: 课间,小荣给大家讲了一个冷笑话,小明理解不了为什么大家听后都捧腹大笑,就说小荣讲的笑话一点水平都没有
参考答案: C 本题解释:【答案】C。解析:心灵投射谬误有两种形式,一种是强调自己的主观意识,即认为自己的观点就是事情的真相。另一种认为自己不了解的就是无法理解的或不是真的。C项小刘的行为是自欺欺人的表现,他对别人说葡萄很酸,但自己并没有认为葡萄是酸的,因为他知道葡萄很甜,不符合“心灵投射谬误”的定义,故本题选C。
90、育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28人。根据成绩,男生全部获奖,而女生则有25%的人未获奖。获奖总人数是42人,又知参加竞赛的是全年级的 。六年级学生共有多少人?_____
A: 130B: 78C: 90D: 111
参考答案: A 本题解释:A【解析】 把参赛的女生人数看作单位“1”,由条件“参加竞赛的女生比男生多28人”可知:男生再增加28人便与单位“1”的量相同了。因为男生全部获奖,女生只有(1-25%)=75%的人获奖,所以,获奖总人数42人再添上28人,即:42+28=70(人),对应的分率就是1+75%。由70÷(1+75%)=40(人)求出参赛女生的人数。参加竞赛的总人数为:40+40-28=52(人)。参赛女生人数是:(42+28)÷[1+(1-25%)]=40(人)全年级学生人数是:(40+40-28)÷ =130(人)。故本题答案为A。
91、早上7点两组农民开始在麦田里收割麦子,其中甲组20人,乙组15人。8点半,甲组分出10人捆麦子;10点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,什么时候乙组所有已割的麦子能够捆好?(假设每个农民的工作效率相同)_____
A: 10:45B: 11:00C: 11:15D: 11:30
参考答案: B 本题解释:工程问题。采用赋值法,赋值每个农民割麦子的效率为1,由题意,甲组割麦子的总量为20×1.5+10×1.5=45,故每个农民捆麦子的效率为45÷1.5÷10=3;设从10点之后经过x小时,乙组的麦子全部捆好。故乙组割麦子的总量为15×(3+x),捆麦子总量为20×3×x,二者应该相等,解得x=1(小时);故11:00时麦子可以全部捆好(最后一步可以采用代入排除)。
92、a大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
93、建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人B: 30人C: 40人D: 50人
参考答案: B 本题解释:【答案】B。解析:采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。
94、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?_____
A: 15B: 16C: 20D: 185
参考答案: B 本题解释:【答案】B。解析:一位偶数有0、2、4、6、8,共5个。考虑倒数第二位,因为相邻数字不相同且为偶数,则有4种选择。倒数第三位与倒数第二位不相同,也有4种选择,共有4×4=16种情况。
95、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,…依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?_____
A: 30B: 34C: 36D: 38
参考答案: D 本题解释: D【解析】 第一次报4的倍数的12名同学向后转后,在报6的倍数的8名同学中,面向老师和背向老师的各4名。分析如下:报4的倍数的同学分别报4,8,12,16,20,24,28,…,48;报6的倍数的同学分别报6,12,18,24,30,…,48;第二次报6的倍数的同学中有4名同学的报数与第一次报4的倍数的同学相同,故两次报数结束后,先前4名背向老师的同学又面向老师,另外4名同学则背向老师。故可推出,背向老师的同学有12名,面向老师的同学有38名。因此,本题正确答案为D。
96、1~100各数所有不能被9整除的自然数的和是_____。
A: 217B: 594C: 5050D: 4456
参考答案: D 本题解释:D解析:在1至100中,被9整除的数的和是9+18+27+…+99=9×(1+2+3+…+11)=9×66=5941至100各数之和是1+2+3+…+100=100(1+100)2=5050所以在1至100的各数中,所有不能被9整除的数的和是5050-594=4456。因此,本题正确答案为D。
97、某网站针对年底上映的两部贺岁电影进行调查,在接受调查的160人中,看过《未来警察》的有91人,看过《杜拉拉升职记》的有59人,22人两部电影都看过,那么,两部电影都没看过的有多少人?_____
A: 32人B: 12人C: 42人D: 10人
参考答案: A 本题解释: A 解析:设两部电影都没看过的有x人,依题意可得:91+59-22+x=160,解得x=32。即有32人两部电影都没看过,答案为A。
98、大小两个数的和是50.886,较大数的小数点向左移动一位就等于较小的数,求较大的数是_____。
A: 46.25 B: 40.26 C: 46.15 D: 46.26
参考答案: D 本题解释:【解析】D。 四个选项的小数点后都是两位,两数之和为50.886,则两个数的尾数都为6,所以可以排除A、C两项。将B、D两项代入,只有D项符合。
99、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为_____。
A: 3.4平方米B: 9.6平方米C: 13.6平方米D: 16平方米
参考答案: C 本题解释:本题属于面积问题。因为把边长为1米的正方体木块置于水中有0.6米浸入水中,所以当将其分割为边长0.25米的正方体木块置于水中时,其浸入水中的高度为3/20米。则可以计算出其中一个分割后的正方体木块与水的接触面积为:(1/4)×(1/4)+4×(1/4)×(3/20)=1/16+3/20,又因为边长1米的正方体可以分割为64个边长为O.25米的正方体,所以题中所求面积为:64×(1/16+3/20)=13.6(平方米)。正确答案为C。
100、一条线段中间另有6个点,则这8个点可以构成多少条线段?_____
A: 15B: 12C: 28D: 36
参考答案: C 本题解释:C。相邻两点构成线段8-1=7中间隔一点构成线段8-2=6类推距离最远两点(两端点)构成线段8-7=1,1+2+3+.+6+7=(1+7)*7/2=28选C