微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 有一批零件,甲、乙两种车床都可以加工。如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务。现在用甲、乙两车床一起加工,结果12天就完成了任务。如果只用甲车床单独加工需多少天完成任务?_____
A: 20天
B: 30
C: 40
D: 45
参考答案: A
本题解释:参考答案:A
题目详解:设甲单独加工x天,乙单独加工
2、单选题 一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15
B: 26
C: 30
D: 60
参考答案: C
本题解释: C解析: 6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷1/5=30(厘米)故本题选C。
3、单选题 甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是_____。
A: 15:11
B: 17:22
C: 19:24
D: 21:27
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析设甲步行X小时,乙步行Y小时。故可得方程4X+48Y=3Y+48X,解得X:Y=45:44,所以步行距离之比4X:3Y=15:11,故正确答案为A。
4、单选题 一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个人都与其余九名选手各赛一盘,每盘棋的胜利者得1分,负者得0分,平局各得0.5分。结果甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分,那么甲、乙、丙三队参加比赛的选手的人数依次是_____。
A: 6人、3人、1人
B: 4人、5人、1人
C: 3人、5人、2人
D: 5人、1人、4人
参考答案: B
本题解释:B【解析】根据10名选手参加比赛,取胜者得1分,而丙队选手平均得分9分,这样丙队参赛选手只能是1人,且与其余9名选手比赛中应全部获胜。又根据每盘赛棋中胜者得1分,负者0分,平局各得0.5分,可知各队得分总数应是整数或小数部分的十位上是5,现乙队选手平均得3.6分,十位上是6,同样,甲、乙两队共有9人参赛,这样乙队参赛选手肯定是5人。因此甲队参赛选手人数是4人,乙队参赛选手人数是5人,丙队参赛选手人数是1人。
5、单选题 甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是_____。
A: 166米
B: 176米
C: 224米
D: 234米
参考答案: B