微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 下图是一个奥林匹克五环标志。这五个环相交成9部分:A、B、C、D、E、F、G、H、I。请将数字1、2、3、4、5、6、7、8、9分别填入这9个部分中,使得五环内的数字之和恰好构成五个连续的自然数。那么,这五个连续自然数的和的最大值是多少?_____
A: 65
B: 75
C: 70
D: 102
参考答案: C
本题解释:正确答案是C考点趣味数学问题解析因为B、D、F、H同时出现在两个圆圈中而其他数都出现在一个圆圈中,所以五个圆圈中的总和为1+2+3+……+9+B+D+F+H≤45+9+8+7+6=75。若五个圆圈中的总和为75,则B+D+F+H=9+8+7+6=30,又因为五个环内的数字和恰好构成五个连续的自然数,所以这五个环内的数字只能是13、14、15、16、17,考虑两端两个圆圈中的总和,S=(A+B)+(H+I)≥13+14=27,但B+H≤9+8=17,A+I≤4+5=9,所以S最大为26,与上面的结论矛盾,所以五个圆圈中的总和不可能为75,又因为五个连续自然数的和是5的倍数,所以五个圆圈中的总和最大为70。当(A、B、C、D、E、F、G、H、I)=(9、7、3、4、2、6、1、8、5)时,五个圆圈的总和就可以取到70,故正确答案为C。
2、单选题 一个三位数,百位数比十位上的数大4,个位上的数比十位上的数大2,这个三位数恰好是后两个数字组成的两位数的21倍,那么,这个三位数是:_____。
A: 532
B: 476
C: 676
D: 735
参考答案: D
本题解释:正确答案是D考点多位数问题解析百位数比十位上的数大4,只有D选项735符合,故正确答案为D。
3、单选题 甲、乙两地相距210公里,a、b两辆汽车分别从甲、乙两地同时相向出发并连续往返于两地,从甲地出发的a汽车的速度为90公里/小时,从乙地出发的b汽车的速度为120公里/小时。问a汽车第二次从甲地出发后与b汽车相遇时,b汽车共行驶了多少公里?_____
A: 560公里
B: 600公里
C: 620公里
D: 630公里
参考答案: B
本题解释:正确答案是B考点行程问题解析a车第二次从甲出发前,经过一个往返的路程,即420公里,所用时间为420÷90=14/3小时;与此同时,b车经过路程为120×14/3=560公里,即一个往返路程加上140公里,此时ab两车位置如图所示。
4、单选题 有40辆汽车,其中30%是货车,其余是轿车。如果有1/4的轿车是出租车,问不是出租车的轿车有几辆?_____
A: 7
B: 12
C: 18
D: 21
参考答案: D
本题解释:正确答案是D考点和差倍比问题解析由题意得:轿车的数量为40×(1-30%)=28(辆),则不是出租车的轿车数目为28×(1-1/4)=21(辆)。故正确答案为D。
5、单选题 若干个相同的立方体摆在一起,前、后、左、右的视图都是
A: 4
B: 6
C: 8
D: 10
参考答案: A
本题解释:正确答案是A考点几何问题解析从最少的情况考虑,如下图所示即可实现。右图为俯视情况,其中阴影表示放置有立方体的位。