1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:正确答案是A考点平均数问题解析将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。秒杀技45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。
2、有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分? _____
A: 7B: 8C: 9D: 10
参考答案: B 本题解释:【答案】B 解析∶四项比赛的总得分是(5+3+2+1)×4=44分,A已得15分,最少得16分,剩下三人总得分最多为28分,要求得分最少的人得分最多且得分互不相同,则三人得分分别是8,9,11。此时一人得三项第二和一项第三,一人得一项第二和三项第三。
3、甲,乙两个科室各有4名职员,且都是男女各半,现从两个科室中选出4人参加培训,要求女职员比重不得低于一半,且每个科室至少选1人,问有多少种不同的选法?_____
A: 67B: 63C: 53D: 51
参考答案: D 本题解释:参考答案
题目详解:第一种情况:4女。满足条件,有1种方法;第二种情况:3女一男。满足条件。有
种方法;第三种情况:2女2男。减去都在同一个科室这一种情况。即
;(其中扣去的为4个人都在第一个科室和都在第二科室)即
种方法;总共有
种。所以,选D。考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
4、下图是一个奥林匹克五环标志。这五个环相交成9部分:A、B、C、D、E、F、G、H、I。请将数字1、2、3、4、5、6、7、8、9分别填入这9个部分中,使得五环内的数字之和恰好构成五个连续的自然数。那么,这五个连续自然数的和的最大值是多少?_____
A: 65B: 75C: 70D: 102
参考答案: C 本题解释:正确答案是C考点趣味数学问题解析因为B、D、F、H同时出现在两个圆圈中而其他数都出现在一个圆圈中,所以五个圆圈中的总和为1+2+3+……+9+B+D+F+H≤45+9+8+7+6=75。若五个圆圈中的总和为75,则B+D+F+H=9+8+7+6=30,又因为五个环内的数字和恰好构成五个连续的自然数,所以这五个环内的数字只能是13、14、15、16、17,考虑两端两个圆圈中的总和,S=(A+B)+(H+I)≥13+14=27,但B+H≤9+8=17,A+I≤4+5=9,所以S最大为26,与上面的结论矛盾,所以五个圆圈中的总和不可能为75,又因为五个连续自然数的和是5的倍数,所以五个圆圈中的总和最大为70。当(A、B、C、D、E、F、G、H、I)=(9、7、3、4、2、6、1、8、5)时,五个圆圈的总和就可以取到70,故正确答案为C。
5、(2008.辽宁)张警官一年内参与破获的各类案件有100多件,是王警官的5倍,李警官的五分之三,赵警官的八分之七,问李警官一年内参与破获多少案件?_____
A: 175B: 105C: 120D: 不好估算
参考答案: A 本题解释:参考答案:A题目详解:设张警官破获的案件为x件,则:根据“是王警官的5倍,李警官的五分之三,赵警官的八分之七”可知,张警官破获了5×3×7×N件,又因100故张警官破获的案件只能为105;则李警官一年内参与破获了案件:105÷3/5=175件。因此,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
6、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86来
参考答案: B 本题解释:B 【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。
7、如图所示,梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18。问EF长为多少?_____
A: 8.5B: 9C: 9.5D: 10
参考答案: B 本题解释:正确答案是B考点几何问题解析
8、某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?_____
A: 6000 B: 12000 C: 12006 D: 12012
参考答案: A 本题解释:【答案】A。解析:这是个植树问题和盈亏问题的复合问题。植树的学生有(202+348)÷(5-4)=550个,一共栽了550×4+202=2402棵树。每边栽了2402÷2=1201棵树,因此学院路长(1201-1)×5=6000米。
9、甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人?_____
A: 680B: 840C: 960D: 1020
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析由题干中"甲厂人数比乙厂多12.5%"可知甲、乙两厂总人数之比为9:8,则可假设甲厂总人数有9n,乙厂总人数有8n,甲乙总人数为17n,故总人数一定能被17整除,排除选项B、C;在A和D之间选择,直接代入A选项,则有680=17n,n=40,则甲厂共360人,乙厂共320人,两厂的技术人员总数为680×45%=306人,甲厂技术人员有170人,非技术人员为190人,乙厂有技术人员136人,非技术人员184人,甲乙两厂的非技术人员相差190-184=6人,满足题意,验证成立。故正确答案为A。标签直接代入数字特性
10、李大夫去山里给一位病人出诊,他下午1点离开诊所,先走了一段平路,然后爬上了半山腰,给那里的病人看病。半小时后,他沿原路下山回到诊所,下午3点半回到诊所。已知他在平路步行的速度是每小时4千米,上山每小时3千米,下山每小时6千米。请问:李大夫出诊共走了多少路?_____
A: 5千米B: 8千米C: 10千米D: l6千米
参考答案: B 本题解释: 
11、某产品售价为67.1,在采用新技术生产节约10%成本之后,售价不变,利润可可比原来翻一番。则该产品最初的成本为_____元。
A: 51.2B: 54.9C: 61D: 62.5
参考答案: C 本题解释:正确答案是C考点经济利润问题解析由题意可知,节约的10%成本与原利润相等,设成本为n,则有67.1-n=0.1n,解得n=61。故正确答案为C。
12、从0,1,2,7,9五个数字中任选四个不重复的数字,组成的最大四位数和最小四位数的差是_____。
A: 8442B: 8694 C: 8740D: 9694
参考答案: B 本题解释:答案:B。由题意可得:最大的四位数为9721,最小的四位数为1027,故两者的差是9721-1027=8694。
13、某日小李发现日历有好几天没有翻,就一次翻了6张,这6天的日期加起来的数字和是141,他翻的第一页是几号?_____
A: 18 B: 21 C: 23 D: 24
参考答案: B 本题解释: 【解析】B。设第一张的日期为X,则可得方程X+X+1+X+2+X+3+X+4+X+5=141,解得X=21,所以选答案B。
14、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
15、有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出_____只袜子。
A: 12B: 13C: 11D: 14
参考答案: B 本题解释:【解析】考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+l=13(只)。故选B。
16、篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共_____种。
A: 18 B: 19 C: 20 D: 21
参考答案: D 本题解释:D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。
17、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返转卖给甲,但乙损失了10%,最后甲按乙卖给自己的价格的九折将这手股票又卖给了乙,则在上述股票交易中_____。
A: 甲刚好盈亏平衡DB: 甲盈利1元C: 甲盈利9元D: 甲亏本1.1元
参考答案: B 本题解释:【答案】B。解析:甲第一次将股票以1000×(1+10%)=1100元转卖给乙,盈利100元,乙又以1100×(1-10%)=990元转卖给甲,甲又以990×0.9=891元转卖给乙,则甲共盈利100-990+891=1元,故本题选择B。
18、甲、乙各有钱若干元,甲拿出1/3给乙后,乙再拿出总数的1/5给甲,这时他们各有160元,问甲、乙原来各有多少钱?_____
A: 120元200元B: 150元170元C: 180元140元D: 210元110元
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析解析1:乙拿出1/5给甲后甲乙各有160元,说明之前乙有160÷4/5=200元,甲有120元,这是甲给乙1/3后剩余的钱数,则甲原有120÷2/3=180元,乙有200-60=140元。解析2:设甲乙原有钱分别为x、y,根据题意有,2/3x+1/5(1/3x+y)=160,4/5(1/3x+y)=160,解得x=180,y=140。标签直接代入逆向考虑
19、A、B、C三本书,至少读过其中一本的有20人,读过A书的有10人,读过B书的有12人,读过C书的有15人,读过A、B两书的有8人,读过B、C两书的有9人,读过A、C两书的有7人。三本书全读过的有多少人?_____
A: 5B: 7C: 9D: 无法计算
参考答案: B 本题解释:B【解析】根据题目的不同可以挑选其中的任意2组或者3组公式答题。首先这里不考虑都不参与的元素(1)A+B+T=总人数(2)A+2B+3T=至少包含1种的总人数(3)B+3T=至少包含2种的总人数这里介绍一下A、B、T分别是什么A=x+y+z; B=a+b+c;T=三种都会或者都参加的人数看这个题目我们要求的是看三本书全部读过的是多少人?实际上是求T根据公式:(1) A+B+T=20(2) A+2B+3T=10+12+15=37(3) B+3T=8+9+7=24(2)-(1)=B+2T=17结合(3)得到T=24-17=7人。
20、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:正确答案是C考点经济利润问题解析根据题意列算式:300÷(1-20%)=375。故正确答案为C。
21、现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒溶液。若从甲中取2100克,乙中取700克混合而成的消毒浓度为3%;若从甲中取900克,乙中取2700克,则混合而成的溶液的浓度为5%。则甲、乙两种消毒溶液的浓度分别为_____。
A: 3%6%B: 3%4%C: 2%6%D: 4%6%
参考答案: C 本题解释:正确答案是C考点浓度问题解析设两种溶液的浓度分别为a、b,则可列方程2100a+700b=(2100+700)×3%,900a+2700b=(900+2700)×5%,解得a=2%,仅C选项符合,故正确答案为C。秒杀技甲中去2100克,乙中取700克混合而成的消毒溶液浓度为3%,则甲、乙两溶液的浓度必然是一个比3%大,一个比3%小,只有C选项符合,故正确答案为C。
22、设
,那么
的值是_____。
A:
B:
C:
D:
参考答案: B 本题解释:参考答案:B题目详解:根据题意,将
,
代入,即:
;所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
23、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比为15%;第二次又加入同样多的水,糖水的含糖量百分比为12%;第三次加入同样多的水,糖水的含糖量百分比将变为多少? _____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:C。【解析】设第一次加入糖水后,糖水的量的为100,则糖的量为15,第二次加水后,糖水的量为15/12*100=125,即加水的量为125-100=25,第三次加水,百分比为15/(125+15)=10%
24、某数的百分之一等于0.003,那么该数的10倍是多少?_____。
A: 0.003B: 0.03C: 0.3D: 3
参考答案: D 本题解释:D【解析】某数的百分之一为0.003,则该数为0.3,那么它的10倍为3。故正确答案为D。
25、一商品的进价比上月低了5%,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为_____。
A: 12%B: 13%C: 14%D: 15%
参考答案: C 本题解释:正确答案是C考点经济利润问题解析
26、有三块草地,面积分别是4亩、8亩、10亩。草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问第三块草地可供50头牛吃几周?_____
A: 6B: 9C: 3D: 7
参考答案: B 本题解释:参考答案:B题目详解:根据题意:此题属于M头牛吃W亩草问题,将单位牧场的牛数代入“N”;单位牧场草的原有存量为y;单位时间草的增长量即自然增长速度为x;第三块地可供50头牛存量完全消失所消耗用的时间3为T;代入公式:
所以,选B考查点:数量关系>数学运算>特殊情境问题>牛儿吃草问题>M头牛吃W亩草问题
27、二十几个小朋友围成一圈,按顺时针方向一圈一圈地连续报数。如果报2和200的是同一个人,那么共有_____个小朋友。
A: 22B: 24C: 27D: 28
参考答案: A 本题解释:A【解析】小朋友的人数应是(200-2)=198的约数,而198=2×3×3×11。约数中只有2×11=22符合题意。
28、(浙江2002,第14题)下列选项中,值最小的是_____。
A:
B:
C:
D:
参考答案: B 本题解释:参考答案:B题目详解:观察选项可知:
,
;我们从简单着手,很明显可得到:
,排除A、D选项;再比较
和
的大小:
,
,所以
,排除C选项;所以,选B。解法二:遇到类似问题我们还可以采用“平方法”来比较大小。考查点:数量关系>数学运算>计算问题之算式计算>比较大小问题
29、科学家对平海岛屿进行调查,他们先捕获30只麻雀进行标记,后放飞,再捕捉50只,其中有标记的有10只,则这一岛屿上的麻雀大约有_____。
A: 150只B: 300只C: 500只D: 1500只
参考答案: A 本题解释:正确答案是A考点概率问题解析假设岛上有X只麻雀,捕捉30只进行标记,再捕捉50只,其中有10只有标记,则可列等式X∶30=50∶10,X=1500÷10=150(只),故正确答案为A。
30、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?_____
A: 760B: 1120C: 900D: 850
参考答案: C 本题解释:参考答案:C题目详解:则由题意,设原计划
天完成,订货任务是
套;列方程可得:
解之,得
;所以,选C。考查点:数量关系>数学运算>盈亏问题
31、10个连续偶数的和是以1开始的10个连续奇数和的2.5倍,其中最大的偶数是多少?
A: 34B: 38C: 40D: 42
参考答案: A 本题解释:【答案】A。解析:猜证结合,以1开始的10个连续奇数的和是250,代入答案中得A。
32、某工程,由甲队单独完成需要15天,由乙队单独完成需要20天,为了赶在10天内完成这项工程,可以选择的方案是_____。
A: 先由甲队单独完成工程量的一半,然后并由乙队单独完成剩下的工程B: 先由甲队单独完成工程量的一半,然后两队合作完成剩下的工程C: 先由甲队单独完成3天,然后两队合作完成剩下的工程D: 先由乙队单独完成3天,然后两队合作完成剩下的工程
参考答案: C 本题解释:正确答案是C考点工程问题解析设工作总量为60,那么甲的工作效率为4,乙的工作效率为3。那么A方案所需花的天数为30÷4+30÷3=17.5>10天,所以A方案不行;B方案所需天数为30÷4+30÷(4+3)=165/14>10,所以B方案不行;C方案所需天数为3+(60-3×4)÷(4+3)=69/7<10,所以C方案可以;D方案所需天数为3+(60-3×3)÷(4+3)=72/7>10,所以D方案不行。故正确答案为C。标签直接代入赋值思想
33、一群人坐车旅游,每辆车坐22人,剩5人没有座位,每辆坐26人,空出5个座位, 问每辆车坐25人,空出多少座位? _____
A: 20B: 15C: 10D: 5
参考答案: C 本题解释: C。一盈一亏型,车的数量为(15+5)÷ (26-22)=5,则共有5×22+5=115人。则坐25人时,115 ÷ 25=4……15,即需要5辆车,空出25-15=10个座位。
34、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,而汽车的速度是他速度的5倍,则此人追上小偷需要_____
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:【解析】D。设小偷速度为V,则他的速度2V,汽车的速度10V。l0秒内小偷走了10V,但车子走了100V,所以距离是110V,而他和小偷的速度差为V,即追上小偷需要110秒。
35、_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点行程问题解析
36、在直线上两个相距一寸的点A和B上各有一只青蛙,A点的青蛙沿直线跳往关于B点的对称点Al,而B点的青蛙跳往关于A点的对称点B1。然后A1点的青蛙跳往关于B1点的对称点A2,B1点的青蛙跳往关于A1点的对称点B2,如此下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多长距离?_____
A: 364寸B: 1088寸C: 1093寸D: 2187寸
参考答案: C 本题解释:C【解析】两只青蛙各跳一次,两只青蛙的距离为原来的3倍,所以跳7次后,两只青蛙的距离为A7B7=37×1=2187(寸)。而且A7在右,B7在左,由对称性可知B7A=BA7,所以BA7=
(寸),故本题正确答案为C。
37、今有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?_____
A: 8B: 10C: 12D: 4
参考答案: D 本题解释:参考答案
题目详解:设剪去小正方形的边长为
:则
;设
、
、
为纸盒的长宽高:对于函数
,
、
、
均为正数,且
为常数;当且仅当
时,
取最大值;所以,
,解得
;此时纸盒容积最大。所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>最值问题
38、从一瓶浓度为20%的消毒液中倒出2/5后,加满清水,再倒出2/5,又加满清水,此时消毒液的浓度为:_____
A: 7.2%B: 3.2%C: 5.0%D: 4.8%
参考答案: A
39、假定一对刚出生的小兔一个月能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。如果一切正常没有死亡,公母兔也比例适调,那么一对刚出生的兔子,一年可以繁殖成_____对兔子。
A: 144B: 233C: 288D: 466
参考答案: A 本题解释:【答案】A。解析:先列举出经过一到六个月兔子的对数分别是1、1、2、3、5、8。很容易发现这个数列的特点:即从第三项起,每一项都等于前两项之和。按这个规律写下去,便可得出一年内兔子繁殖的对数:1、1、2、3、5、8、13、21、34、55、89、144。可见一年内兔子共有144对。故正确答案为A。
40、10个箱子总重100公斤,且重量排在前三位数的箱子总重不超过重量排在后三位的箱子总重的1.5倍,问最重的箱子重量最多是多少公斤?_____
A: 500/23B: 200/11C: 20D: 25
参考答案: A 本题解释:正确答案是A考点多位数问题解析要使最重的箱子尽可能的重,则其他的箱子应该尽可能的轻,极端情况为除最重的箱子外其他箱子一样重,并且轻于最重的箱子。据此假设最重的箱子与其他任一箱子重量分别为N和M,则有N+9M=100,N>M,N+2M≤1.5×3M,解得N≤500/23。故正确答案为A。
41、某大型企业的8个车间分布在一条环形铁路旁(如图)。四列货车在铁道上转圈,货车到某一车间时,所需装卸工的人数已在图上标出,装卸工可以固定在车间,也可以随车流动。问:至少需要多少装卸工才能满足装卸要求?_____
A: 235B: 237C: 238D: 239
参考答案: A 本题解释:参考答案:A题目详解:利用“核心法则”可知,答案直接得到是235人。备注:用户“传说中的疯子”(2010-10-0616:11:00),认为:题有问题!什么是核心法则,或者又叫焦点规则?但经过分析,我们认为该题没有问题,答案也不存在歧义核心法则如果有M辆车和N(N>M)个工厂,所需装卸工的总数就是需要装卸工人数最多的M个工厂所需的装卸工人数之和。(若M≥N,则把各个点上需要的人加起来即答案)考查点:数量关系>数学运算>统筹问题>人员分配问题
42、一项工程如果交给甲乙两队共同施工,8天能完成;如果交给甲丙两队共同施工,10天能完成;如果交给甲丁两队共同施工,15天能完成;如果交给乙丙丁三队共同施工,6天就可以完成。如果甲队独立施工,需要多少天完成?_____
A: 16 B: 20C: 24D: 28
参考答案: C 本题解释:【解析】C。本题为工程问题,设工作总量为120,则甲乙工作效率和为15、甲丙工作效率和为12、甲丁工作效率和为8、乙丙丁效率和为20,可得甲的效率为(15+12+8-20)÷3=5,则甲单独完成需要120÷5=24天。所以选择C选项。
43、工作人员做成了一个长60厘米,宽40厘米,高22厘米的箱子,因丈量错误,长和宽均比设计尺寸多了2厘米,而高比设计尺寸少了3厘米,那么该箱子的表面积与设计时的表面积相差多少平方厘米?_____
A: 4B: 20C: 8D: 40
参考答案: C 本题解释:正确答案是C考点几何问题解析实际表面积为(60×40+40×22+60×22)×2,设计表面积为(58×38+38×25+58×25)×2,计算尾数,实际表面积尾数为0,设计表面积尾数为(4+0+0)×2=8,二者之差尾数为2或8,显然只有C符合条件。故正确答案为C。
44、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C【解析】300/80%=375元。故选C。
45、某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:_____
A: 5人B: 6人C: 8人D: 12人
参考答案: C 本题解释:【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
46、(2008广东,第11题)某人工作-年的报酬是18000元和-台洗衣机,他干了7个月不干了,得到9500元和-台洗衣机,这台洗衣机价值多少钱?_____
A: 8500B: 2400C: 2000D: 1500
参考答案: B 本题解释:参考答案:B题目详解:根据题意,假设这个人一个月的报酬为
元,洗衣机价值为
元,则:
所以,选B。考查点:数量关系>数学运算>利润利率问题>其他利润相关问题
47、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:正确答案是B考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
48、甲、乙、丙、丁四人步行,在同时间内甲行5步时乙可行6步;乙行7步时丙可行8步;丙行9步时丁可行10步。又甲、乙、丙、丁每步的距离之比为15∶14∶12∶10。问甲行630米时,丁可行多少米?_____
A: 640米B: 680米C: 720米D: 750米
参考答案: A 本题解释:A【解析】将四人步数之比与每步距离之比结合考虑,可推出相同时间内两人所行距离之比,并由此求出丁所行的步数。即甲∶乙=(15×5)∶(14×6)=25∶28,乙∶丙=(14×7)∶(12×8)=49∶48,丙∶丁=(12×9)∶(10×10)=27∶25。可得甲行630米时丁行(28×48×25×630)÷(25×49×27)=640米。故甲行630米时丁行640米。
49、某工厂11月份工作忙,星期六、日不休息,而且从第一天开始,每天下班后都从总厂陆续派相同人数的工人到分厂工作,直到月底下班后,总厂还剩工人238人。如果月底统计总厂工人的工作量是8070个工作日(1人工作1天为1个工作日),且无1个缺勤,那么,这个月由总厂派到分厂工作的工人共多少人?_____
A: 46人B: 30人C: 60人D: 62人
参考答案: C 本题解释:11月份有30天。设每天下班后派往分厂的人数为2,则根据题意可知,最后一天总厂的工作量为238+z,可列方程238+x+238+2x+…+238+30x=8070,解得x=2,即每天派2人到分厂工作,11月份30天共派了60人到分厂。故答案为C。
50、每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?_____
A: 40分钟B: 48分钟C: 56分钟D: 64分钟
参考答案: B 本题解释:参考答案B题目详解:他们第四次相遇时:三人跑的路程一定均为200的整数倍;而三个人的速度分别为250/3米/分,350/3米/分,450/3米/分;因此三人第四次相遇时:跑的时间一定是3的整数倍;只有B项符合;所以,选B。考查点:数量关系>数学运算>行程问题>追及问题>环线追及问题>环线多次追及问题
51、两个运输队,第一队有320人,第二队有280人,现因任务变动,要求第二队的人数是第一队人数的2倍,需从第一队抽调多少人到第二队?_____
A: 80人B: 100人C: 120人D: 140人
参考答案: C 本题解释:C设需抽调x人,根据题意可得2(320-x)=280+x,解得x=120人。
52、A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路程等于乙火车5分钟走的路程,乙火车上午8时整从B站开往A站,开出一段时问后,甲火车从A站出发开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是15:16,那么,甲火车在什么时刻从A站出发开往B站?()
A: 8时12分B: 8时15分C: 8时24分D : 8时30分
参考答案: B 本题解释:正确答案是B考点行程问题解析
53、某医院内科病房有护士15人,每两人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次这两人再同值班,最长需要几天_____
A: 15B: 35C: 30D: 5
参考答案: B 本题解释:B.【解析】n×(n-1)/2=15×14/2=105,105×8/24=35。故选B。
54、甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。已知甲、乙、丙三人同时出发,甲和丙相遇后5分钟,乙与丙相遇。如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。问A、B两地距离为多少米?_____
A: 8000米B: 8500米C: 10000米D: 10500米
参考答案: D 本题解释:正确答案是D考点行程问题解析本题理解的重点在于:在甲和丙相遇时,甲比乙多走的距离为后来乙丙一起走的距离。有了这个思想,就容易解出,甲和丙相遇时,甲比乙多走的距离为(75+65)×5=700m,假设甲和丙相遇的时候,甲走了a分钟,则(85-75)a=700,解得a=70。所以两地相距为(85+65)×70=10500米,故正确答案为D。
55、甲、乙有数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个,如甲、乙二人一起按2元5个卖全部的萝卜,总收入会比预想的1个人少4元,两人共有多少萝卜?_____
A: 420B: 120C: 360D: 240
参考答案: D 本题解释:D。
56、有面值为8分、1角和2角的三种纪念邮票若干张,总价值为1元2角2分,则邮票至少有_____。
A: 7张B: 8张C: 9张D: 10张
参考答案: C 本题解释:参考答案:C题目详解:要使邮票最少,则要尽量多的使用大面额邮票:2角的要多用;并且要达到总价值1元2角2分:2角的邮票要使用4张;1角的邮票要使用1张;8分的邮票要4张;
即:1元2角2分;所以至少要用
张。所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
57、一个人到书店购买了一本书和一本杂志,在付钱时,他把书的定价中的个位上的数字和十位上的看反了,准备付21元取货。售货员说:“您应该付39元才对。”请问书比杂志贵多少钱?_____
A: 20B: 21C: 23D: 24
参考答案: C 本题解释:参考答案:C题目详解:解法一:将选项一一代入题目进行验证:看错价钱后,书的价格比原来的价格少了
元;所以,看错定价后的书价为13元时符合题目的要求。则书的定价为31元,由于看错后准备付21元:所以杂志的定价为
元,书比杂志贵
元。所以,选C。解法二:列方程法:根据题意可知:顾客少付39-21=18元。设书的价钱为l0x+y:则将价钱看错后需付款10y+x(此时y处于十位,有y>0),二者之差为9(x-y)=18,因此有x-y=2。由于十位与各位相差2:所以书价格有可能是31,42…因为总价是39,即x=3,y=1;所以书价只能是31元。而杂志的定价为8元,书比杂志贵31-8=23元。所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
58、小华在练习自然数求和,从1开始,数着数着他发现自己重复数了一个数。在这种情况下,他将所数的全部数求平均,结果为7.4,请问他重复的那个数是_____。
A: 2B: 6C: 8D: 10
参考答案: B 本题解释:正确答案是B考点平均数问题解析
故正确答案为B。秒杀技总和=7.4×总个数,总和是整数,故总个数肯定是5的倍数。由于平均数是7.4,所以总个数应该是10或者15。如果总个数是10,总和应该是74,由于从1到10加起来才55,说明肯定不是10。总个数是15,总和应该是7.4×15=111,而从1到14加起来是(1+14)×14÷2=105,说明多加了一个6。故正确答案为B。标签数字特性
59、有3个大人、2个小孩要一次同时过河,渡口有大船、中船、小船各一只,大船最多能载1个大人、2个小孩,中船最多能载大人、小孩各1人,小船最多能载大人1人,为了安全,小孩需大人陪同,则乘船的方式有多少种?_____
A: 6B: 12C: 18D: 24
参考答案: C 本题解释:C。如果两个小孩由一个大人陪着,有3种情况,乘船的方式有3×2=6种;如果两个小孩分别由两个大人陪着,有6种情况,乘船方式有6×2=12种。故一共有6+12=18种乘船方式。
60、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:正确答案是A考点经济利润问题解析假设每册书利润为10元,去年销量为10册,则今年每册书的利润为8元,销量为17册。因此去年的总利润为10×10=100元,今年的总利润为8×17=136元,因此今年销售该畅销书的总利润比去年增加了36%。正确答案为A。
61、A、B两数恰含有质因数3和5,它们的最大公约数是75,已知A数有12个约数,B数有10个约数,那么,A、B两数的和等于_____。
A: 2500B: 3115C: 2225D: 2550
参考答案: D 本题解释:参考答案
题目详解:由题目可知,A、B两数之和是75的倍数,选项中只有D是75的倍数。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
62、一个四位数”□□□□”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数”□□□□”中四个数字的和是_____。
A: 17B: 16C: 15D: 14
参考答案: C 本题解释:正确答案是C考点计算问题解析列方程可解得,设4位数为X,有X/15+X/12+X/10=1365,解得X=5460,4数字和为15。故正确答案为C。秒杀技由题意可知,该四位数能被3整除,则其所有数字之和能被3整除,仅C符合。标签数字特性
63、一个自然数”x”,除以3的余数是2,除以4的余数是3,问”x”除以12的余数是_____。
A: 1B: 5C: 9D: 11
参考答案: D 本题解释:正确答案是D考点计算问题解析直接代入选项,很明显只有D符合,故正确答案为D。标签直接代入
64、小李的弟弟比小李小2岁,小王的哥哥比小王大2岁、比小李大5岁。1994年,小李的弟弟和小王的年龄之和为15。问2014年小李与小王的年龄分别为多少岁:_____
A: 25,32B: 27,30C: 30,27D: 32,25
参考答案: B 本题解释:正确答案是B,解析:根据题中已知条件“小王的哥哥比小王大2岁,比小李大5岁”可知小王比小李大3岁,从选项可判断,只有B选项符合。故正确答案为B。考点:年龄问题
65、小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?_____
A: 1/3B: 1/4C: 1/5D: 1/6
参考答案: C 本题解释:正确答案是C考点概率问题解析两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2),特别注意这里没有顺序要求,是组合。因此概率为1/5,故正确答案为C。标签分类分步
66、423×187-423×24-423×63的值是_____。
A: 41877B: 42300C: 42323D: 42703
参考答案: B 本题解释: B 【解析】原式可化为423×(187-24-63)。
67、_____
A: AB: BC: CD: D
参考答案: A 本题解释:正确答案是A考点几何问题解析
68、a大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
69、数学竞赛团体奖品是10000本数学课外读物。奖品发给前五名代表队所在的学校。名次在前的代表队获奖的本数多,且每一名次的奖品本数都是100的整数倍。如果第一名所得的本数是第二名与第三名所得的本数之和,第二名所得的本数是第四名与第五名所得本数之和,那么,第三名最多可以获得多少本?_____
A: 1600B: 1800C: 1700D: 2100
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设一到五名分别得到A、B、C、D、E。由题意可得,A=B+C,B=D+E,故A+B+C+D+E=B+C+B+C+B=3B+2C=10000,则3B=10000-2C,显然10000-2C必为3的倍数,只有C符合,故正确答案为C。
70、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米的价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格可下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过_____。
A: 800吨B: 1080吨C: 1360吨D: 1640吨
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析所求量为投放储备玉米的最大数量,对应正常市场价格的最低价。此时价格差为2.68-1.86=0.82元,而每100吨可降0.05元,因此数量不能超过0.82÷0.05×100=1640吨。故正确答案为D。
71、11338×25593的值为:_____
A: 290133434B: 290173434C: 290163434D: 290153434
参考答案: B 本题解释:答案:B 解析:由于25593为3的倍数,故最后的结果一定能够被3整除,分析选项,只有B符合。
72、某停车场按以下方法收费:每4小时收5元,不足4小时按5元收取,每晚超过零时加收5元,并且每天早上8点开始重新计时,某天下午15时小王将车停入停车场,取车时缴纳停车费65元,小王停车时间t的范围是_____。
A: 如果A、B、P不在同一条直线上,汽车所在位置有3个,可位于A、B两地之间或A、B两地外侧B: 如果A、B、P不在同一条直线上,汽车的位置有无穷多个C: 如果A、B、P位于同一条直线上,汽车拉于A、B两地之间或两地外侧D: 如果A、B、P位于同一条直线上,汽车位于A、B两地外侧,且汽车到A的距离为20千米
参考答案: D 本题解释:正确答案是B考点几何问题解析AB距离为40,AP和BP距离之和为60千米,若A、B、P三点在同一直线上,则P点位于AB外侧10千米处;若A、B、P三点不在同一直线上,则转化为A、B点固定,AP+BP=60即可,有无数种选择。故答案为B。
73、甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?_____
A: 6B: 7C: 8D: 9
参考答案: A 本题解释:正确答案是A考点工程问题解析解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。秒杀技秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。标签直接代入赋值思想
74、在下图中,大圆的半径是8。求阴影部分的面积是多少?_____
A: 120B: 128C: 136D: 144
参考答案: B 本题解释:正确答案是B考点几何问题解析
75、从一副完整的扑克牌中,至少抽出_____张牌,才能保证至少6张牌的花色相同。
A: 21B: 22C: 23D: 24
参考答案: C 本题解释:【答案】C。解析:一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。
76、将自然数1-100分别写在完全相同的100张卡片上,然后打乱卡片,先后随机取出4张,问这4张先后取出的卡片上的数字呈增序的几率是多少?_____
A: 1/16B: 1/24C: 1/32D: 1/72
参考答案: B 本题解释:正确答案是B考点概率问题解析
77、有一筐苹果,把它们三等分后还剩2个苹果;取出其中两份,将它们三等分后还剩两个:然后再取出其中两份,又将这两份三等分后还剩2个。问:这筐苹果至少有几个_____
A: 19B: 23C: 24D: 26
参考答案: B 本题解释:参考答案:B题目详解:根据中国剩余定理:我们面对着最后剩下的2个苹果,它们是把某两份苹果三等分后剩下的;换句话说,把所剩的2个苹果与三等分的三份苹果放在一起,应是上一轮分割中的两份;所以这个总数必须能被2整除。题中又问这筐苹果"至少"有几个:从而上述总数又应尽可能地少,三份苹果中,每份最少有1个苹果,于是三份便是3个。
,但5不被2整除,所以每份不应只有一个苹果:退而求其次,设三份苹果中每份是2个,从而三份共6个,
,于是可设上一轮中共有
个苹果:14个又是第一轮分割时三等分所得的2份;从而依题义,最初的苹果应有
个。所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理
78、一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数是多少?_____
A: 19B: 99C: 199D: 299
参考答案: D 本题解释:参考答案:D题目详解:此题采用层层推进法:一个数除以5余4:那么用4加上5的倍数,直至除以8余3为止;可以得到
,满足条件;再用19加上5和8的最小公倍数40,直至除以11余2:
;因此满足条件最小的自然数是299。所以,选D.考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理
79、电视台要播放一部30集电视连续剧,如果要求每天安排播出的集数互不相等,该电视剧最多可以播_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:[解析]正确答案为A。应尽可能减少每天播出的电视剧,才能增加播出天数,即第一天播1集,第二天播2集,以此类推,播到第六天时,共播了21集,第七天需播9集,如果拖到第八天,则一定会出现两天播出的电视剧集数量相同的情况,所以只能选A。
80、股票买入和卖出都需要通过证券公司进行交易,每次交易手续费占交易额的
,某人以10元的价格买入1000股股票,几天后又以12元的价格全部卖出,若每次交易还需付占交易额
的印花税,则此人将获利_____。
A: 1880元B: 1890元C:
元D: 1944元
参考答案: B 本题解释:参考答案:B题目详解:每次交易损失为:2‰+3‰=5‰故将获利:1000×12-1000×10-1000×10×5‰-1000×12×5‰=1890所以,选B。考查点:数量关系>数学运算>利润利率问题>成本、售价、利润、利润率之间的等量关系问题
81、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间为_____立方米。 B: 1500C: 5000D: 9000
参考答案: D 本题解释:【答案】D。解析:仓库的容量为250×10×4=10000立方米,1000个棱长为1米的正方体箱子体积为1000×1×1×1=1000立方米,则剩余空间为10000-1000=9000平方米,故正确答案为D。
82、把长为60cm的铁丝围成矩形,则矩形最大面积为:_____
A: 15B: 60C: 225D: 450
参考答案: C 本题解释:参考答案:C题目详解:设矩形的长为xcm,宽为(30-x)cm:则矩形的面积S=x(30-x)=30x-x2;对面积求导得:
=30-2x,令
=0时,
即当长和宽均为15cm时;矩形的最大面积
所以,选C;考查点:数量关系>数学运算>计算问题之算式计算>最值问题
83、有一笔奖金,按1:2:3的比例来分,已知第三人分450元,那么这笔奖金总共是_____元。
A: 1150 B: 1000 C: 900 D: 750
参考答案: C 本题解释:C。根据题意可知,这笔奖金共分为6份,而分到3份的第三人拿到了450元,则6份当是450×2=900元。所以正确答案为C项。
84、有a、b、c三个数,已知a×b=24,a×c=36,b×c=54。求a+b+c=_____。
A: 23B: 21C: 19D: 17
参考答案: C 本题解释:正确答案是C考点计算问题解析解析1:由前两个式子可得b=2c/3,代入第三个式子可得c=9或者-9,当c=9时,a=4,b=6;c=-3时,a=-4,b=-6。所以a+b+c=19或者a+b+c=-19。解析2:ab乘ac再除bc,就是a的平方=16,所以a等于正负4;ab=24,ac=36,bc=54,得出b等于正负6,c等于正负9。a+b+c=19或-19。注释:a+b+c=19或-19,答案只给出了一种。
85、某年级150名同学准备选一名同学在教师节庆祝会上给老师献花。选举的方法是:让150名同学排成一排。由第一名开始报数,报奇数的同学落选退出队列,报偶数的同学站在原位不动,然后再从头报数,如此继续下去,最后剩下的一名当选。小胖非常想去,他在第一次排队时应该站在队列的什么位置才能被选中?_____
A: 64B: 88C: 108D: 128
参考答案: D 本题解释:参考答案
题目详解:第一次报数,“从一开始报数,报奇数的同学退出队列”:故第一次报数,2的倍数原位不动;第二次报数:2的平方的倍数原位不动;第三次报数:2的立方的倍数原位不动;以此类推,到第7次:只剩下2的7次方的倍数原地不动,其余都退出,即排在
位时才能被选中。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性
86、市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410B: 400C: 390D: 380
参考答案: D 本题解释: 【解析】正方形的边长是20米,那么圆的半径是
米,那么圆形草坪的面积是
,故选D。
87、若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是_____。
A: yz-xB: (x-y)(y-z)C: x-yzD: x(y+z)
参考答案: B 本题解释:正确答案是B考点计算问题解析三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论:(1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D;(2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。故正确答案为B。标签赋值思想分类分步
88、袋子里装有红、蓝两色的小球各12个,先从袋子中拿出一个球,然后将它放回袋子中,混合后再从中拿出一个小球。那么两次抽中不同颜色的小球的几率有_____。
A: 20%B: 25%C: 50%D: 60%
参考答案: C 本题解释:【解析】因为两种颜色的小球数量相等,那么每次抽中其中一种颜色小球的概率均为50%。第一种情况:第一次抽中了红色小球,第二次抽中了蓝色小球,概率是50%×50%一25%;第二种情况:第一次抽中了蓝色小球,第二次抽中了红色小球,概率是50%×50%=25%。那么两次抽中不同颜色的小球的整体概率等于两种情况下的概率之和,即25%+25%=50%,答案为C。
89、小张从华兴园到软件公司上班要经过多条街道(软件公司在华兴园的东北方)。假如他只能向东或者向北行走,则他上班不同走法共有()。
A: 12种B: 15种C: 20种D: 10种
参考答案: D 本题解释:【答案】D。解析1:图中每个交叉点上的数字表示到达该点的方法数。只能向东或向北行走,则到达某点的方法数等于其西边一点和南边一点方法数的加和。因此到达软件公司有10种走法,正确答案为D。
解析2:只能向东或者向北行走,因此从华兴园到软件公司只需要向东走2个格,向北走3个格即可。可转化为朝着一个方向走的5步,每一步都有2种选择:向东或者向北,则到软件园的走法有5×2=10种。故正确答案为D。
90、一小型货车站最大容量为50辆车,现有30辆车,已知每小时驶出8辆,驶入10辆,则多少小时车站容量饱和?_____
A: 8B: 10C: 12D: 14
参考答案: B 本题解释:B[解析]每小时驶出8辆,驶入10辆的结果就是每小时车站增加两辆车,以此类推,10个小时车站增加20辆,容量饱和。
91、某校图书馆新购进120本图书,其中教育学类书60本,心理学类40本,有30本既不属于教育学类也不属于心理学类,则这批书中教育心理学书有多少本?_____
A: 10B: 20C: 30D: 40
参考答案: A 本题解释:A【解析】设教育心理学书购进X本。则根据两集合容斥原理核心公式可得︰60+40-x=120-30x=10,故答案为A选项。
92、西南赛区四支球队为了争夺小组第一名而进行小组循环赛,已知小马队已比赛了3场,小熊队已比赛了2场,小龙队已比赛了1场,问小牛队比赛了几场_____
A: 3B: 2C: 1
参考答案: B 本题解释:参考答案:B题目详解:小马队已比赛了3场:说明小马队和小熊队、小龙队、小牛队各打了1场;小龙队已比赛了1场:说明小龙队只和小马队比赛了1场;小熊队已比赛了2场:因为和小马队比赛了1场,所以还有1场比赛。因为小龙队只和小马队比赛过,所以小熊队只能和小牛队进行比赛。因此小牛队比赛了2场,分别是和小马队、小熊队进行的比赛。所以,选B。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
93、_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点几何问题解析
94、甲、乙两艘游轮同时从秦皇岛和天津出发,甲轮从天津出发,开出2天后在海上与乙轮相遇,一天后到达秦皇岛,而乙轮则于相遇后4天到达天津,假设甲、乙两轮的时速保持不变,甲轮的速度是乙轮的几倍?_____
A: 1倍B: 2倍C: 3倍D: 2.5倍
参考答案: B 本题解释:B【解析】甲走完全程用3天,乙走完全程用6天,故甲速度是乙的2倍。
95、小张数一篇文章的字数,二个二个一数最后剩一个,三个三个一数最后剩一个,四个四个一数最后剩一个,五个五个一数最后剩一个,六个六个一数最后剩一个,七个七个一数最后剩一个,则这篇文章共有多少字?_____
A: 501B: 457C: 421D: 365
参考答案: A 本题解释:答案:A【解析】甲=丙×(1+20%)×(1+20%)=144%丙,则甲比丙多44%。
96、一个数被3除余1,被4除余2,被5除余4,1000以内这样的数有多少个?_____
A: 15B: 17C: 18D: 19
参考答案: B 本题解释:参考答案:B题目详解:3、4的最小公倍数为12;根据"差同减差,公倍数做周期"可知:所有满足条件的数可表示为12n-2,也就是除以12余2;所有12n-2中满足被5除余4:最小数是n=3时,
;满足条件的就是:
,1000以内,即0≤60n+34≤999,
16,一共17个;所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理
97、8个甲级队应邀参加比赛,先平均分成两组,分别进行单循环赛,每组决出前两名,再由每组的第一名,另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,整个赛程的比赛场数是_____。
A: 16B: 15C: 1D: 13
参考答案: A 本题解释:正确答案是A考点排列组合问题解析
标签分类分步
98、某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是_____
A: 140B: 569C: 712D: 998
参考答案: D 本题解释:D。选项中只有998加上3能整除11和13,加上5能整除17。
99、甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米,两队合作8天后还差52米完工。这条水渠长多少米?_____
A: 1232B: 1323C: 1275D: 1352
参考答案: A 本题解释:正确答案是A考点工程问题解析水渠长度=8×75+8(75﹣2.5)+52=2×8×75﹣8×2.5﹢52=1200﹢52-20=1232(米)。故正确答案为A。
100、一个四边形广场,它的四边长分别是60米,72米,84米,96米,现在在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?_____
A: 22B: 25C: 26D: 30
参考答案: C 本题解释:【解析】C。4个数字都相差12,可将树的间隔设为12米,可种树(60+72+84+96)/12=5+6+7+8=26,选C。