微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、李大夫去山里给一位病人出诊,他下午1点离开诊所,先走了一段平路,然后爬上了半山腰,给那里的病人看病。半小时后,他沿原路下山回到诊所,下午3点半回到诊所。已知他在平路步行的速度是每小时4千米,上山每小时3千米,下山每小时6千米。请问:李大夫出诊共走了多少路?_____
A: 5千米B: 8千米C: 10千米D: l6千米
参考答案: B 本题解释: 
2、现在时间为4点13古分,此时时针与分针成什么角度?_____
A: 30度 B: 45度 C: 90度 D: 120度
参考答案: B 本题解释: B。
3、定义:①群体互补效应:由不同年龄、专业、智能水平、气质类型的人才有机地组成一个结构合理的人才群体,达到知识互用、能力互补,使只有专才的个体,变成多能的人才群。②群体协调效应:在结构合理的人才群体中,逐步形成了群体每个成员共同遵守的良好的道德规范和传统作风,以此调节和协调群体中个体与个体、个体与群体、群众与社会的关系,并影响和控制整个群体,使群体的力量和功能得到维护和加强。③群体感应效应:在结构合理的人才群体中,人才之间在目标上志同道合,在学风上互相感染,在学术上互相影响,同心同德,紧密团结,创新意识和创造思维不断激化和强化,形成对人才创造特别有利的“微型气候”。典型例证:(1)某大学有效整合资源,在校内外组织多方面人才,团结协作,集体攻关。(2)正因为好大学有优良的校风和传统,所以人人才都想上好大学。(3)小李做事低调,从不张扬。上述典型例证与定义存在对应关系的数目有_____。
A: 0个B: 1个C: 2个D: 3个
参考答案: C 本题解释:【答案】C。解析:第一步:抓住每个定义中的关键词群体互补效应:关键词强调“不同年龄、专业、智能水平、气质类型的人才”、“知识互用、能力互补”。群体协调效应:关键词强调“群体每个成员共同遵守”、“调节和协调”。群体感应效应:关键词强调“目标上志同道合,在学风上互相感染,在学术上互相影响”。第二步:逐一分析例证与定义间的关系例证(1)大学组织了多方面的人才,形成群体互补效应,对应定义①,例证(2)好大学因为有优良的校风和传统而受欢迎,属于群体感应效应,对应定义③;例证(3)讲的是小李的个体行为,与上面的定义均不相符。例证与定义存在对应关系的数目有2个,故正确答案为C。
4、要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成,若两人一起折叠,需要多少分钟完成?_____
A: 10B: 15C: 16D: 18
参考答案: D 本题解释:答案:D【解析】此题实质上是一道工程问题。设纸飞机总量为1,则甲甲每分钟完成1/30,乙每分钟完成1/45,甲乙共花时间为1/(1/30+1/45)=18。故正确答案应为选项D。
5、办公室有甲、乙、丙、丁4位同志,甲比乙大5岁,丙比丁大2岁。丁三年前参加工作,当时22岁。他们四人现在的年龄之和为127岁。那么乙现在的年龄是_____
A: 25岁B: 27岁C: 35岁D: 40岁
参考答案: C 本题解释:答案:C【解析】根据题意,丁现在25岁,丙现在27岁,甲和乙共127-27-25=75岁,甲比乙大5岁,所以乙现在(75-5)÷2=35岁。
6、某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题_____
A: 20B: 25C: 30D: 80
参考答案: A 本题解释:答案:A 解析:不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
7、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C.【解析】300/80%=375元。故选C。
8、两个数的差是2345,两数相除的商是8,求这两个数之和_____。
A: 2353B: 2896C: 3015D: 3456
参考答案: C 本题解释:C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
9、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:每本书的利润值下降了20%,为原来的0.8,销量增加了70%,为原来的1.7,1.7×0.8=1.36,1.36—1=0.36,即为36%。
10、将10克盐和200克浓度为5%的盐水一起加入一杯水中,可得浓度为2.5%的盐水,则原来杯中水的克数是_____。
A: 570B: 580C: 590D: 600
参考答案: C 本题解释:C。
11、马场有甲、乙、丙、丁四个入口可以提供人进入游玩,如果现在开了甲、乙两个入口,经过了4.5小时游客全部能够进入,如果开乙、丙两个入口,游客3小时能全部进入,如果开丙、丁两个入口,游客3.5小时全部进入。若只打开甲、丁两个入口,则需要几个小时,游客才能全部进入?_____
A: 63/11B: 63/32C: 196/33D: 172/33
参考答案: A 本题解释:【答案】A。解析:设总人数为1,则开甲、乙两个口,1小时能进入2/9人;开乙、丙两个口,1小时能进入1/3人;开丙、丁两个口,一小时能进入2/7人;三种情况同时存在时,一小时能进入的人数为甲口+乙口+乙口+丙口+丙口+丁口=2(乙口+丙口)+甲口+丁口=2/9+1/3+2/7=53/63(人)。又因乙口+丙口=1/3(人),所以甲、丁两口同时开放,1小时进入的人数为11/63人。所以只打开甲、丁两个口,游客全部进入,需要的时间是63/11小时。
12、用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是_____。
A: 15125B: 849420C: 786780D: 881721
参考答案: D 本题解释:D最大的数为985310,最小的数为103589,故它们的差为881721。
13、11338×25593的值为:_____
A: 290133434B: 290173434C: 290163434D: 290153434
参考答案: B 本题解释:答案:B 解析:由于25593为3的倍数,故最后的结果一定能够被3整除,分析选项,只有B符合。
14、某种奖券的号码有9位,如果奖券至少有两个非零数字并且从左边第一个非零数字起,每个数字小于它右边的数字,就称这样的号码为“中奖号码”,请问该种奖券的“中奖号码”有_____。
A: 512个B: 502个C: 206个D: 196个
参考答案: B 本题解释:【解析】解一:号码1—9各出现1或0次,按递增顺序排列(前面补0),共产生2×2×2×2×2×2×2×2×2=29个号码,其中无非零数字或仅有1个非零数字的应予排除(共有10种)。所以中奖号码共有512-10=502个。故本题正确答案为B。解二:中奖号码至少有两个非零数字且从左边第一个非零数字起,每个数字小于它右边的数字,则可得出:C29+C39+C49+C59+C69+C79+C89+C99=502,故选B。
15、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
16、新上任的库房管理员拿着20把钥匙去开20个库房的门,他只知道每把钥匙只能打开其中的一扇门,但不知道哪一把钥匙开哪一扇门,现在要打开所有关闭的20个库房门,他最多要开多少次?_____
A: 80B: 160C: 200D: 210
参考答案: D 本题解释:D【解析】本题应从最不利情况去考虑:打开第一个房间要20次,打开第二个房间要19次……共计要开20+19+18+…+1=210(次)。
17、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不 为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
18、3×999+8×99+4×9+8+7的值是:_____
A: 3840B: 3855C: 3866D: 3877
参考答案: A 本题解释: 【答案】A。解析:四个选项尾数各不相同,可考虑结果的尾数。7+2+6+8+7=30,所以尾数为0,故选A。
19、24689-1728-2272的值为_____
A: 689B: 713C: 521D: 479
参考答案: A 本题解释:A【解析】先用心算将两个减数相加,1728+2272=4000。然后再从被减数中减去减数之和,即4689-4000=689。
20、某船第一次顺流航行21千米又逆流航行4千米,第二天在同 河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是_____。
A: 2. 5:1 B: 3:1 C: 3. 5:1 D: 4:1
参考答案: B 本题解释:【解析】B。设船本身速度为 X 千米 / 小时,水流速度为 Y 千米 / 小时,则顺水船速为 (X+Y) 千米 / 小时,逆水船速为 (X-Y) 千米 / 小时。依据题意可得: 21X+Y+4X-Y = 12X+Y+7X-Y ,由此可得 X+YX-Y = 3 ,即顺水船速是逆水船速的 3 倍。
21、小木、小林、小森三人去看电影,如果用小木带的钱去买三张电影票,还差0.55元;如果用小林带的钱去买三张电影票,还差0.69元;如果用三人带去的钱买三张电影票,就多0.30元,已知小森带了0.37元,那么买一张电影票要用多少元?_____
A: 1.06B: 0.67C: 0.52D: 0.39
参考答案: D 本题解释:D【解析】设每张电影票x元,则小木的钱数为3x-0.55元,小林的钱数为3x-0.69元,小森的钱数为0.37元。三人的钱数和为3x+0.30元,即可得出:3x-0.55+3x-0.69+0.37=3x+0.30,求得x=0.39(元)。
22、牧羊人正在放牧,一个人牵着一只羊问他。“你的羊群有多少只?”牧羊人答道:“这群羊加上一倍,再加上原来羊群的一半。又加上原来羊群的四分之一,算上你牵来的羊,正好满一百只。”请问,牧羊人的羊群有多少只?_____
A: 32只B: 34只C: 36只D: 38只
参考答案: C 本题解释:C[解析]“原来羊群的四分之一”说明羊群数可以被4整除,排除B、D项;代入答案得C项。
23、有甲、乙两个项目组。乙组任务临时加重时,从甲组抽调了甲组1/4的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的1/10。此时甲组与乙组人数相等。由此可以得出结论_____。
A: 甲组原有16人,乙组原有11人B: 甲、乙两组原组员人数之比为16∶11C: 甲组原有11人,乙组原有16人D: 甲、乙两组原组员人数之比为11∶16
参考答案: B 本题解释:[解析]正确答案为B。[解析]正确答案为B。设甲组原有a人,乙组原有b人,故由题意可得:(b+a4)×910=110(b+a4)+34a,所以
A:b=16:11。
24、
25、有5位田径运动员争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的情况可能有_____。
A: 124种B: 125种C: 130种D: 243种
参考答案: B 本题解释: B [解析] 每项比赛的冠军都有5种可能性,所以获得冠军的情况有C15×C15×C15=125(种)。故本题选B。
26、在平面直角坐标系中,如果点P(3a-9,1-a)在第三象限内,且横坐标、纵坐标都是整数,则点P的坐标是_____。
A: (一1.一3)B: (一3,一1)C: (一3,2)D: (一2,一3)
参考答案: B 本题解释:B【解析】第三象限内的值都是负值,因此可得
。且P点横纵坐标都是整数,因此2,所以P点坐标是(一3,一1)。
27、某计算机厂要在规定的时间内生产一批计算机,如果每天生产140台,可以提前3天完成;如果每天生产120台,就要再生产3天才能完成。问规定完成的时间是多少天?_____
A: 30B: 33C: 36D: 39
参考答案: D 本题解释:答案:D【解析】解答此题可以同时使用代入法和方程法。为快速解题可首先考虑方程法,设规定时间为x天,则(x-3)×l40=(x+3)×l20,解得x=39。故选D。
28、小李用150元钱购买了16元一个的书包、10元一个的计算器和7元一支的钢笔寄给灾区儿童,如果他买的每一样物品数量都不相同,书包数量最多而钢笔数量最少,那么他买的计算器数量比钢笔多多少个?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:B【解析】计算器每个10元,书包每个16元,钢笔每支7元,说明书包的总钱数十钢笔的总钱数=10的倍数。根据题意,钢笔数量最少,当钢笔支数取l时,7元×1=7(元),书包总钱数个位应是3,但16乘以任何数都不可能是3,故舍去。当纲笔支数取2时,7元×2=14(元),书包总钱数的个位数应是6,16乘以l、6个位均可以是6,故根据题意书包数量最多取6。则书包总钱数为16×6=96(元),钢笔总钱数为7×2=14(元),计算器总钱数为150-96-14=40(元),计算器个数为40÷10=4(个),计算器数量比钢笔多4-2=2(个)。
29、小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动,一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。原来小虎有_____个球。
A: 12B: 5C: 8D: 20
参考答案: C 本题解释:【解析】设四个人的球数在变动后的个数为χ,可得方程(χ+2)+(χ-2)十2χ+0.5χ=45,解得χ=10,则原来小虎有10-2=8个球。
30、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币 ,则小红所有五分三角币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: A 本题解释:【解析】A。设正方形每条边用 X 枚硬币,则正三角形每条边用 (X+5) 枚硬币,由题意可得等式: 4X = 3(X+5) ,解得 X = 15 。所以小红共有 60 枚五分硬币,面值 3 元。
31、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
32、某市出租车运费计算方式如下:起步价2公里6元,2公里之后每增加1公里收费1.7元,6公里之后每增加1公里收费2.0元,不足1元按四舍五入计算。某乘客乘坐了31公里,应该付多少元车费? _____
A: 63 B: 64 C: 65 D: 66
参考答案: A 本题解释:A。2公里以内收费6元;2-6公里收费1.7×4=6.8元;6-31公里收费2×25=50元。因此总计应付车费62.8元,四舍五入即63元。故选A项。
33、10个人欲分45个苹果,已知第一个人分了5个,最后一人分了3个,则中间的8人一定存在连续的两人至少分了_____个苹果。
A: 8B: 9C: 10D: 11
参考答案: C 本题解释:【答案】C。解析:中间的8人共分得苹果45—5—3=37(个),将中间的8人分为4组,即(第2、3个人)(第4、5个人)(第6、7个人)(第8、9个人)。由37=9×4+1可知,必有1组,即连续的两人分到了10个苹果。故答案为C。
34、一段路程分为上坡、平路、下坡三段,路程长之比依次是1∶2∶3。小龙走各段路程所用时间之比依次是4∶5∶6。已知他上坡时速度为每小时3千米,路程全长是50千米,小龙走完全程用多少小时?_____
A: 10(5/12)B: 12C: 14(1/12)D: 10
参考答案: A 本题解释: A解析:上坡、平路、下坡的速度之比是:14∶25∶36=5∶8∶10平路速度为:3×8/5=24/5(千米/小时)下坡速度为:3×10/5=6(千米/小时)上坡路程为:50×1/(1+2+3)=50/6=25/3(千米)平路路程为:50×2/(1+2+3)=50/3(千米)下坡路程为:50×3/(1+2+3)=25(千米)25/3÷3+50/3÷24/5+25÷6=10(5/12)(小时)故本题选A。
35、在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,下列数字满足条件的是:_____
A: 25 B: 20 C: 18 D: 17
参考答案: A 本题解释:A。【解析】对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5,先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数。故选A。
36、某日小李发现日历有好几天没有翻,就一次翻了6张,这6天的日期加起来的数字和是141,他翻的第一页是几号?_____
A: 18B: 21C: 23D: 24
参考答案: B 本题解释:B解析:设翻的第一页的日期为a,那么有:6a+,=141,解得a=21,选B。也可以利用中位项定理求解,141÷6=23.5,说明,排在第三和第四的分别是23号和24号,那么第一页应该是21号。
37、李明从图书馆借来一批图书,他先给了甲5本和剩下的
,然后给了乙4本和剩下
,最后自己还剩2本。李明共借了多少本书?_____
A: 30B: 40C: 50D: 60
参考答案: A 本题解释: 【解析】A。解法一、设李明共借书x本,则
,解得x=30;解法二、思维较快的直接倒推用反计算,
。
38、某校图书馆新购进120本图书,其中教育学类书60本,心理学类40本,有30本既不属于教育学类也不属于心理学类,则这批书中教育心理学书有多少本?_____
A: 10B: 20C: 30D: 40
参考答案: A 本题解释:A【解析】设教育心理学书购进X本。则根据两集合容斥原理核心公式可得︰60+40-x=120-30x=10,故答案为A选项。
39、小李开了一个多小时会议,会议开始时看了手表,会议结束时又看了手表,发现时针与分针恰好互换了位置。问这次会议大约开了1小时多少分?_____
A: 51B: 47C: 45D: 43
参考答案: A 本题解释:A。时针和分针正好互换了位置,说明两针一共转了720度。因为时针每分钟转过0.5度,分针每分钟转过6度,所以720÷(6+0.5)≈110.7分,约为l小时51分。
40、地铁工程在某1000米路段地下施工,两头并进,一侧地铁盾沟机施工,每天掘进3米,工作5天,休息一天进行检修;另一侧工人轮岗不休,每天掘进1米,多少天此段打通_____
A: 282B: 285C: 286D: 288
参考答案: C 本题解释:【答案】C。解析:一侧工程队6天挖3×5=15米,另一侧工程队6天挖6米,以6天为一个周期,两个工程队一个周期一共挖了21米,1000米的路段一共需要1000÷21=47…13。一共需要47个整周期,还余13米,两侧工程队一起挖还需要4天,所以一共需要47×6+4=286天。
41、我们知道,一个正方形可以剪成4个小正方形,那么一个正方形能否剪成11个正方形,能否剪成13个正方形(大小不一定相同)?_____
A: 前者能,后者不能B: 前者不能,后者能C: 两个都能D: 两个都不能
参考答案: C 本题解释:【答案】C。
42、在距离10千米的两城之间架设电线杆,若每隔50米立一个电线杆,则需要有_____个电线杆。
A: 15B: 201C: 100D: 250
参考答案: B 本题解释:B 【解析】所需数量为长度数除以间隔数加1。
43、我国民间常用十二生肖进行纪年,十二生肖的排列顺序是:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。2011年是兔年,那么2050年是_____。
A: 虎年B: 龙年C: 马年D: 狗年
参考答案: C 本题解释:C。从2011年增加到2050年,需要增加39年,其中前36年为12的倍数,在周期过程中不予考虑。因此2050年为兔向后数3年,即为马年。故选C。
44、杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?_____
A: 3.90B: 4.12C: 4.36D: 4.52
参考答案: D 本题解释:【解析】D。三次的单价分别为5元、5×80%=4元、4×80%=3.2元。最外层有货物(7-1)x4=24个,中间层有24-8=16个,最内层有I6-8=8个。所以总进价为3.2x24+4xl6+5x8=l80.8元,要保证20%的利润率,货物定价为180.8x(1+20%)÷(24+16+8)=4.52元。
45、4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。若都不飞进自己的笼子里去,有多少种不同的飞法?_____。
A: 7B: 8C: 9D: 10
参考答案: C 本题解释:C。本题属于计数问题。本题是排列组合中的错位问题,根据对错位问题数字的记忆,答案应为9种。所以选择C选项。计算过程:设四只小鸟为1,2,3,4,则1有3个笼可选择,不妨假设1进了2号笼,则2也有3个笼可选择,不妨设2进了3号笼,则剩下鸟3、4和笼1、4只有一种选择。所以一共有3×3=9种。
46、有一个电子钟,每走8分钟亮一次灯,每到整点响一次铃。中午12点整,电子钟响铃又亮灯。下一次既响铃又亮灯是几点钟?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:【答案】B。解析:8分钟和一个小时(60分钟)的最小公倍数是120分钟,所以再过120分钟又一次既响铃又亮灯。
47、某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题_____
A: 20B: 25C: 30D: 80
参考答案: A 本题解释:A【解析】不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
48、某人做两位数乘两位数乘法时,把一个乘数的个位数5误写成3,得出的乘积是552,另一个学生却把5误写成8,得出的乘积是672,则正确的乘积是_____。
A: 585B: 590C: 595D: 600
参考答案: D 本题解释:【解析】(672-552)÷(8-3)=24,即另一个乘数是24;552÷24=23,故正确的乘数是25,则正确的乘积就是24×25=600。故选D。
49、100张多米诺骨牌整齐地排成一列,依顺序编号为1、2、3……99,100.第一次拿走所有奇数位置上的骨牌,第二次再从剩余骨牌中拿走所有奇数位置上的骨牌,依此类推。请问最后剩下的一张骨牌的编号是多少?_____
A: 32B: 64C: 88D: 96
参考答案: B 本题解释:B。【解析】本题关键是理解题意,第一次拿走的是所有奇数,第二次拿走的各项是2分别乘以1、3、5、7、9……,依次类推,每拿走一次后,剩下的第一个数是20、21,22、23、24……,在100之内要使2n取值最大,所以最后剩下的是64,选B。
50、某班46个同学要在A、B、C、D、E五位候选人中选出一位体育委员。已知A得选票25张,B得选票占第二位,C、D得票相同,而E选票最少,只得4票。那么B得了多少张选票?_____
A: 7张B: 9张C: 6张D: 4张
参考答案: A 本题解释:【解析】由题干可知,B、C、D三人共得选票46-25-4=17(张)。设C、D每人得票数为m,B得票数为n,则有2m+n=17(n>m),则m=5,n=7。故B得选票为7张。
51、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。
分,该数值可以根据以上式子判定尾数为6,选择B。
52、设有9个硬币,其中有1分、5分、1角以及5角四种,且每种硬币至少有1个。若这9个硬币总值是1.77元,则5分硬币必须有几个?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:C。【解析】由题意知,每种硬币至少有1个,则知四种硬币各1个共0.66元,又由于硬币总值为1.77元,则还需增加1.11元,即5个硬币,从而需硬币1分1个,硬币5角2个,最后还需有1角。由于题意表明有9个硬币,应选2个5分硬币,因而共有3个5分硬币。
53、用1个70毫升和1个30毫升的空容器盛取20毫升的水到水池A中,并盛取80毫升的酒精到水池B中,倒进或倒出某个容器都算一次操作,则最少需要经过几次作?_____
A: 15B: 16C: 17D: 18
参考答案: A 本题解释:答案:A【解析】设70毫升的容器为X,30毫升的容器为Y。1.倒满Y,30毫升;2.Y倒入X至Y空,X30毫升;3.倒满Y,30毫升;4.Y倒入X至Y空,X60毫升;5.倒满Y,30毫升;6.Y倒入X至X满,X70毫升,Y20毫升;7.Y倒入水池A中。8.倒满X,70毫升;9.X倒入Y至Y满,X40毫升,Y30毫升;10.Y全倒掉;11.X倒入Y至Y满,X10毫升,Y30毫升;12.Y全倒掉;13.X倒入水池B中至X空;14.X倒满,70毫升;15.X倒入水池B中至X空。15次即可完成,答案为A项。
54、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?_____
A: 240B: 320C: 450D: 480
参考答案: B 本题解释: 答案【B】采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) =320(种)。
55、一个正三角形和一个正六边形周长相等,则正六边形面积为正三角形的:_____
A: AB: BC: CD: D
参考答案: B 本题解释:答案:B.[解析]本题为几何类题目。因为正三角形和一个正六边形周长相等,又正三角形与正六边形的边的个数比为1︰2,所以其边长比为2︰1,正六边形可以分成6个小正三角形,边长为1的小正三角形面积:边长为2的小正三角形面积=1︰4。所以正六边形面积:正三角形的面积=1×6/4=1.5。所以选B。
56、小明、小华、小强三人在超市购买学习用品,小明买了3本日记本,7支铅笔,1本单词本,共花了22元;小华买同样的4本日记本,10支铅笔,1本单词本,共花了29元,小强买同样的2本日记本,2只铅笔,2本单词本,共用多少钱?_____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:【答案】A。解析:设日记本x元,铅笔y元,单词本z元,则有3x+7y+z=22;4x+lOy+z=29。为方便计算,假设系数最大的铅笔价格为0,则有3x+z=22;4x+z=29。解得x=7,z=1。则小强花了:7×2+O×2+1×2=16元(需注意的是所求必须是x,y,z的整数倍才可以这样假设)。
57、甲、乙、丙练习投篮球,一共投了3150,共有64次没投进。已知甲和乙投进348次,乙和丙一共投进369次,乙投进多少个?_____
A: 28 B: 31 C: 30 D: 33
参考答案: B 本题解释:【解析】B。甲+乙+丙=150-64=86,甲+乙=48,乙+丙=69,故乙=(甲+乙)-(乙+丙)-(甲+乙+丙)=48+69-86=31次。
58、某个月有五个星期六,已知这五个日期的和为85,则这个月中最后一个星期六是多少号?_____
A: 10B: 17C: 24D: 31
参考答案: D 本题解释:【答案】D。解析:一个月有五个星期六,日期和为85,则平均数为17,因为五个星期六的日期构成公差为7的等差数列,平均数即是第三个星期六的日期,则第五个星期六的日期为17+7+7=31,故正确答案为D。
59、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有_____
A: 280种 B: 240种C: 180种D: 96种
参考答案: B 本题解释: 答案【B】由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。
60、某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?_____
A: 1.23B: 1.80C: 1.93D: 2.58
参考答案: D 本题解释:【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。
61、某单位职工24人中,有女性11人,已婚的16人。在已婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:B。易知该单位有男性13人,其中已婚的有10人,故未婚的有3人,选B。
62、有一列车从甲地到乙地,如果是每小时行100千米,上午11点到达,如果每小时行80千米是下午一点到达,则该车的出发时间是_____
A: 上午7点 B: 上午6点 C: 凌晨4点 D: 凌晨3点
参考答案: D 本题解释: 【解析】D。设出发时间是T,那么100×(11-T)=80(13-T),解得T=3,即凌晨3点。
63、用直线切割一个有限平面,后一条直线与此前每条直线都要产生新的交点。第1条直线将平面分成2块,第2条直线将平面分成4块,第3条直线将平面分成7块,按此规律将该平面分为22块需:_____
A: 5条直线B: 6条直线C: 7条直线D: 8条直线
参考答案: A 本题解释:增加的面的个数:交第一条直线,分割两个面,以后交一条直线,则增加的面的个数为交点增加数加1,即(n-1+1) = n 故对n条直线,面数为 n + (n-1) + …… + 2 + 2 = n(n+1)/2 +1 注意:开始面上只有1条直线时已有2个面,故最小为2。总结下:对第n条直线: 面数:n(n+1)/2 +1 故答案为6。
64、校对一份书稿,编辑甲每天的工作效率等于编辑乙、丙每天工作效率之和,丙的工作效率相当于甲、乙每天工作效率之和的1/5。如果三人一起校对只需6天就可完成。现在如果让乙一人单独校对这份书稿,则需要_____天才能完成。
A: 20B: 16C: 24D: 18
参考答案: D 本题解释:D 解析:三人一起完成校对需要6天,那么三人每天的效率之和是1/6。因为甲每天的工作效率等于乙、丙每天工作效率之和,那么甲的工作效率为1/12,乙、丙的效率和也是1/12。设乙单独完成校对需要x天,那么根据题意可得到方程:1/12-1/x=(1/12+1/x)×1/5解得x=18,即乙单独完成校对需要18天,正确答案为D。
65、甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?_____
A: 30B: 240C: 480D: 720
参考答案: D 本题解释:【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。
66、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
67、A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路程等于乙火车5分钟走的路程。乙火车上午8时整从B站开往A站。开出一段时间后,甲火车从A站出发开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是15∶16。那么,甲火车在_____从A站出发开往B站。
A: 8时12分B: 8时15分C: 8时24分D: 8时30分
参考答案: B 本题解释:【答案】B。解析:由“甲火车4分钟所走的路程等于乙火车5分钟所走的路程”可知,甲、乙两火车速度之比为5∶4,取甲、乙速度分别为5、4。相遇时乙火车共行驶1小时,设甲火车共行驶x小时,则依题意有:=,解得x=,即甲火车共行驶了45分钟,所以甲在8时15分出发。
68、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字_____。
A: 3B: 0C: 7D: 4
参考答案: C 本题解释:【答案】C。解析:一位数占l×9=9个位置,二位数占2×90=180个位置,三位数占3×900=2700个位置,四位数占4×9000=36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4,所以答案为33579+10000=43579的第4个数字7。故应选C。
69、若一个边长为20厘米的正方体表面上挖一个边长为10厘米的正方体洞,问大正方体的面积增加了多少? _____
A: 100cm2B: 400cm2C: 500cm2D: 600cm2
参考答案: B 本题解释:B。【解析】正方体6个面,在表面上挖一个边长为10厘米的正方体洞,使得大正方体表面积发生改变:增加的面为正方体洞凹进去的五个面,同时又使大正方体的表面积减少一个正方体洞面面积。因此,大正方体面积最终增加:10*10*5-10*10=400cm2
70、有一批书,分给公司的所有人,若每人一本,则还差19本,若每个部门派7本,则多出1本。如果再招聘2个人进公司。则正好每个部门有9人,问:总共有_____个部门。
A: 11B: 9C: 7D: 5
参考答案: A 本题解释:A。
71、五个瓶子都贴有标签,其中恰好贴错了三个,贴错的可能情况有多少种?_____
A: 60B: 46C: 40D: 20
参考答案: D 本题解释:D【解析】根据题意贴错三个,贴对两个。首先从五个瓶子中选出3个的种类为C35=10种,这三个瓶子为贴错标签的,这三个瓶子贴错标签的有两种情况。所以五个瓶子中贴错三个标签的情况有10×2=20种。
72、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
73、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少?_____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。
74、除以5余1,b除以5余4,如果3a >b,那么3a-b除以5余几? _____
A: 1B: 2C: 3D: 4
参考答案: D 本题解释:D【解析】3a 除以5 应余1×3=3,已知b 除以5 余4,则3a-b 除以5 余3-4+5=4。故选D。
75、
76、一堆沙重480吨,用5辆载重相同的汽车运3次,完成了运输任务的25%,余下的沙由9辆同样的汽车来运,几次可以运完?_____
A: 4次B: 5次C: 6次D: 7次
参考答案: B 本题解释:【答案】B。解析:因为用5辆载重相同的汽车运3次,完成了运输任务的25%,所以每辆车一次可以运总工程量的(25÷5÷3)%=(5/3)%,所以9辆车一次可以运总工程量的9×(5/3)%=15%,余下的75%用9辆车运的话需要75÷15=5次,故正确答案为B。
77、松鼠妈妈采松果,晴天每天可采20个,雨天每天只能采12个。它一连几天共采了112个松果,平均每天采14个。这几天中有几天下雨?_____
A: 3B: 4C: 5D: 6
参考答案: D 本题解释:【答案解析】松鼠妈妈一连采了松果的天数为:112÷14=8(天)。设雨天有x天,则晴天有(8-x)天,列方程得20×(8-x)+12x=1125×(8-x)+3x=28x=6故本题正确答案为D。
78、毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟? _____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:A。若要时间最短,则一定要让耗时最长的两头牛同时过河。先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,共用时5+8+3=16分钟。
79、甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米。问东、西两城城相距多少千米?_____
A: 60B: 75C: 90D: 135
参考答案: B 本题解释: 
80、有甲乙丙三种盐水,浓度分别为5%、8%、9%,质量分别为60克、60克、47克,若用这三种盐水配置浓度为7%的盐水100克,则甲种盐水最多可用_____
A: 49克B: 39克C: 35克D: 50克
参考答案: A 本题解释:【答案】A。解析:
81、一段路程分为上坡、平路、下坡,三段路程长之比依次是1∶2∶3。小龙走各段路程所用时间之比依次是4∶5∶6。已知他上坡时速度为每小时3千米,路程全长是50千米,小龙走完全程用多少小时?_____
A: 10(5/12)B: 12C: 14(1/12)D: 10
参考答案: A 本题解释:A解析:上坡、平路、下坡的速度之比是:14∶25∶36=5∶8∶10平路速度为:3×8/5=24/5(千米/小时)下坡速度为:3×10/5=6(千米/小时)上坡路程为:50×1/(1+2+3)=50/6=25/3(千米)平路路程为:50×2/(1+2+3)=50/3(千米)下坡路程为:50×3/(1+2+3)=25(千米)小龙走完全程用的时间为:25/3÷3+50/3÷24/5+25÷6=10(5/12)(小时)故本题选A。
82、有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?_____
A: 6B: 7C: 8D: 9
参考答案: D 本题解释:【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。
83、货车和客车分别由甲乙两地相对开出,在货车离甲地30公里处与客车相遇,相遇后两车继续前进,分别到达甲乙两地后立即返回,途中在离乙地21公里处,货车又与客车相遇。问甲乙两地的距离是多少公里?_____
A: 39B: 69C: 81D: 111
参考答案: B 本题解释:B。货车和客车第一次相遇时,共行了一个全程,其中货车行了30公里。第二次相遇时,两车共行了三个全程,那么货车应当是行了30×3=90(公里)。这90公里恰好等于一个全程加上此时货车距离乙地的距离,所以甲乙两地的距离为90一21=69(公里)。
84、食堂购进200斤含水量为90%的西红柿,3天后再测试发现西红柿的含水量变为80%,那么这批西红柿的总重量共减少了_____千克。
A: 100B: 10C: 20D: 50
参考答案: D 本题解释:D【解析】西红柿的水分蒸发,但水分之外的其他物质的重量并没有改变,由此可知现在西红柿的重量为:200×(1-90%)÷(1-80%)=100(斤)。那么这批西红柿的重量共减少了200-100=100(斤)=50(千克)。故本题答案为D。
85、8项不同的工程由三个工程队承包,每队至少承包2项,则不同的承包方案有多少种?_____
A: 5880种B: 2940种C: 1960种D: 490种
参考答案: B 本题解释:B【解析】8项不同的工程可以分为2、2、4和2、3、3两种情况,所以共有C28C26A33÷A22+C38C35A33÷A22=2940种。
86、张家和李家都使用90米的篱笆围成了长方形的菜园,已知李家的长方形菜园的长边比张家短5米,但是菜园面积却比张家大50平方米,则李家的长方形菜园面积为_____。
A: 550平方米B: 500平方米C: 450平方米D: 400平方米
参考答案: B 本题解释:【答案】B。解析:缺少的量为张家和李家菜园的具体长宽,可用方程法。设李家菜园长边为x米,则其短边长为45-x米;张家菜园长边为x+5米,其短边长为40-x,根据题意:x(45-x)-(x+5)×(40-x)=50,可解得x=25,李家菜园面积为x(45-x)=25×20=500。故本题答案为B选项。
87、取甲种硫酸300克和乙种硫酸250克,再加水200克,可混合成浓度为50%的硫酸;而取甲种硫酸200克和乙种硫酸150克,再加上纯硫酸200克,可混合成浓度为80%的硫酸。那么,甲、乙两种硫酸的浓度各是多少?_____
A: 75%,60%B: 68%,63%C: 71%,73%D: 59%,65%
参考答案: A 本题解释:【答案】A。解析:
88、某企业有甲、乙、丙三个部门,已知三个部门员工的人数比为4:5:6,平均年龄是34岁,甲部门员工的平均年龄是30岁,丙部门员工的平均年龄是20岁。问乙部门员工的平均年龄是多少岁?_____
A: 45B: 48C: 51D: 54
参考答案: D 本题解释:D.【解析】这是一道加权平均数问题。设乙部门员工的平均年龄为x岁,则有
<p>具体计算时,x=54。因此,本题的正确答案为D选项。
89、一列快车和一列慢车相对而行,其中快车车长200米,慢车车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是_____。
A: 6秒B: 6.5秒C: 7秒D: 7.5秒
参考答案: D 本题解释:D【解析】两车相向而行,故慢车、快车相对速度均为V(快)+V(慢),慢车走的路程为快车车长200米;同理,坐在快车上看慢车,走的距离为250米。故
。
90、某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%。问:此人盈利或亏损的情况如何?_____
A: 挣了8元 B: 亏了8元 C: 持平 D: 亏了40元
参考答案: B 本题解释: 【解析】B。96×2-[96÷(1+20%)+96÷(1-20%)]=192-200=-8,亏了8元。
91、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:【答案】B。解析:三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。
92、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。
93、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。
94、1898年4月1日,星期五,分别把三个钟调整到相同的时间:12点。第二天中午发现A钟时间完全准确,B钟正好快了1分钟,C钟正好慢了1分钟。现在假设三个钟都没有被调,它们保持着各自的速度继续走而且没有停。那么到_____,三只时钟的时针分针会再次都指向12点。
A: 1900年3月20日正午12点B: 1900年3月21日正午12点C: 1900年3月22日正午12点D: 1900年3月23日正午12点
参考答案: C 本题解释:【答案】C。解析:B钟1天时间快了1分钟,C钟1天时间慢了1分钟,若他们时针分针都再次指向12点,那么,B钟总共快了12小时,同时C钟慢了12小时。那么需要的时间为60×12=720天,由此,此题变成1898年4月1日的720天后是几月几日的问题。由于1899年跟1900年都为平年,所以两年即730天后为1900年4月1日,往前数10天为3月22日,故正确答案为C。此题要注意闰年的计算方法:公元年数可被4整除(但不可被100整除)为闰年,但是正百的年数必须是可以被400整除的才是闰年,所以1900年是平年。
95、实行“三统一”社区卫生服务站卖药都是“零利润”。居民刘某说“过去复方降压片卖3.8元,现在才卖0.8元;藿香正气水以前2.5元,现在降了64%。另外两种药品也分别降了2.4元和3元。”问这四种药平均降了_____
A: 3.5元B: 1.8元C: 3元D: 2.5元
参考答案: D 本题解释: 【解析】D。藿香正气水降价2.5×64%=1.6元,则四种药平均降价(3.8-0.8+1.6+2.4+3)÷4=2.5元。
96、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:D【解析】根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
97、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
98、某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为_____。
A: 60度B: 65度C: 70度D: 75度
参考答案: A 本题解释:【答案解析】基本价格的80%是0.5×0.8=0.4,设每月标准用电X度,则0.5X+(84-X)×0.4=39.6,解得X=60,选A。
99、某企业发奖金是根据利润提成的。利润低于或等于10万元时可提成10%,低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润额为40万元时,应发放奖金多少万元?_____
A: 2B: 2.75C: 3D: 4.5
参考答案: B 本题解释:【答案】B。解析:40万元的利润,10万元按10%计算利润,10万元按7.5%计算利润,再20万元按5%计算利润。共10×10%+10×7.5%+20×5%=2.75万元。
100、有一个长方体容器,长40厘米,宽30厘米,高10厘米,里面的水深6厘米(最大面为底面)。如果把这个容器盖紧,再竖起来(最小面为底面),则里面的水深是多少厘米_____
A: 15厘米 B: 18厘米 C: 24厘米 D: 30厘米
参考答案: C 本题解释:【解析】C。盖紧后竖起前水的底面积为40×30平方厘米,深为6厘米,则体积为40×30×6立方厘米。盖紧后竖起水的体积不变,底面积变成了30×10平方厘米,此时水深应为
。