微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、两个数的差是2345,两数相除的商是8,求这两个数之和_____。
A: 2353B: 2896C: 3015D: 3456
参考答案: C 本题解释:C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
2、商店卖气枪子弹,每粒1分钱,每粒4分钱,每10粒7分钱,每20粒1角2分钱。小明的钱至多能买73粒,小刚的钱至多能买87粒.小明和小刚的钱合起来能买多少粒? _____
A: 160B: 165C: 170D: 175
参考答案: B 本题解释:【答案】B。解析:小明子弹73颗,可知买了3个20粒,1个10粒,3个1粒,共有46分钱;同理小刚买了4个20粒,1个5粒,2个l粒,共有54分钱。两人共有100分钱,可以买8个20粒,1个5粒,共卖165粒。
3、用a、b、c三种不同型号的客车送一批会议代表到火车站,用6辆a型车,5趟可以送完;用5辆a型车和10辆b型车,3趟可以送完;用3辆b型车和8辆c型车,4趟可以送完。问先由3辆a型车和6辆b型车各送4趟,剩下的代表还要由2辆c型车送几趟?_____
A: 3趟B: 4趟C: 5趟D: 6趟
参考答案: B 本题解释:【答案】B。解析:方程法解题,主要求出a=2b,3b=2c,然后列方程求得选择B选项。
4、1005×10061006-1006×10051005=? _____
A: 0 B: 100 C: 1000 D: 10000
参考答案: A 本题解释:【答案】A。解析:1005×10061006-1006×10051005=1006×1006×10001-1006×1005×10001=0。即正确答案为A。
5、甲乙丙的速度之比为3:4:5,经过相同的一段路,三人所用时间之比:_____
A: 3:4:5 B: 5:4:3 C: 20:15:12 D: 12:8:5
参考答案: C 本题解释:C【解析】根据公式“时间=路程÷速度”可知,经过相同的路程,甲、乙、丙的时间比为1/3:1/4:1/5=20:15:12。
6、一批玩具,比进价高200%销售,一段时间后,六一儿童凶促销,玩具按定价6折出售,打折后这批价格比进价高百分之几?_____
A: 20 B: 40 C: 60 D: 80
参考答案: D 本题解释:D。假设进价为100,则打折前售价为100×(1+200%)=300,打折后售价为300×60%=180元,比进价高(180-100)÷100×100%=80%。故选D项。
7、某大型项目考察团队的所有员工年龄都在26~35岁之间,问:改考察团队至少有多少人才能保证在同一年出生的有5人?_____
A: 41B: 49C: 50D: 51
参考答案: A 本题解释:【答案】A。解析:最不利情况就是每年出生的人都有4个人,做题方法:最不利的情况数+1=4×10+1=41
8、有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?_____
A: 6B: 7C: 8D: 9
参考答案: D 本题解释:【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。
9、1.31×12.5×0.15×16的值是_____。
A: 39.3B: 40.3C: 26.2D: 26.31
参考答案: A 本题解释:A【解析】本式可写为1.31×12.5×4×0.15×4。
10、四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式_____。
A: 60种B: 65种C: 70种D: 75种
参考答案: A 本题解释:[解析]正确答案为A。细分一下传球路径,第一次接球的人只能是非甲,第二第三次接球的人可能是甲或非甲,第四次接球的人只能是非甲,第五次接球的人一定是甲,每次传球后接到球的人可分析如下:第一次第二次第三次第四次第五次第一种情况:非甲甲非甲非甲甲第二种情况:非甲非甲甲非甲甲第三种情况:非甲非甲非甲非甲甲按排列组合,第一种情况的传球方式有3×1×3×2×1=18,第二种有3×2×1×3×1=18,第三种情况有3×2×2×2×l=24,相加共有60种,故选A。
11、(101+103+…+199)-(90+92+…+188)=_____。
A: 100 B: 199 C: 550 D: 990
参考答案: C 本题解释:C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。
12、在一个口袋中有l0个黑球、6个白球、4个红球.至少从中取出多少个球才能保证其中有白球? _____
A: 14B: 15C: 17D: 18
参考答案: B 本题解释:【答案】B.解析:抽屉原理,最坏的情况是10个黑球和4个白球都拿出来了,最后第15次拿到的肯定是白球。
13、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?_____
A: 8点48分 B: 8点30分 C: 9点 D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
14、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄罗斯评委给出的平均分是92,那么中国评委和俄罗斯评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C【解析】设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。
15、实行“三统一”社区卫生服务站卖药都是“零利润”。居民刘某说“过去复方降压片卖3.8元,现在才卖0.8元;藿香正气水以前2.5元,现在降了64%。另外两种药品也分别降了2.4元和3元。”问这四种药平均降了_____
A: 3.5元B: 1.8元C: 3元D: 2.5元
参考答案: D 本题解释: 【解析】D。藿香正气水降价2.5×64%=1.6元,则四种药平均降价(3.8-0.8+1.6+2.4+3)÷4=2.5元。
16、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?_____
A: 40B: 41C: 44D: 46
参考答案: C 本题解释:【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
17、有一块草地,上面的青草每天都生长得一样快。这块草地上的青草供20头牛吃,可以吃12天,或者供25头牛吃,可以吃8天。某人有牛70头,如果要保证青草不被吃完,需要在几块这样的草地上放牧?_____
A: 7B: 8C: 9D: 10
参考答案: A 本题解释:【答案】A。解析:假设这块草地原有草量为x,每天长草量为y,每头牛每天吃草的量为1,则根据公式可得:
解得x=10,这块草地每天的长草量够10头牛吃。要保证青草不被吃完,需要在70÷10=7(块)这样的草地上放牧。
18、有两个山村之间的公路都是上坡和下坡,没有平坦路。客车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时。现知客车在两个山村之间往返一次,需要行驶4小时。请问这两个山村之间的距离有多少千米?_____
A: 45B: 48C: 50D: 24
参考答案: B 本题解释: 【解析】B。根据平均速度公式可知,全程的平均速度是:
,全程的平均速度是:
。(已知往返速度,求全程的平均速度,是有简便的算法的,要熟练把握。)两山村之间的路程是:(24×4)2=48千米。
19、有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?_____
A: 16 B: 15 C: 14 D: 13
参考答案: A 本题解释:A。【解析】先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1.哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2.弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3.哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块。
20、某项工程计划300天完成,开工100天后,由于施工人员减少,工作效率下降20%,问完成该工程比原计划推迟多少天? _____
A: 40B: 50C: 60D: 70
参考答案: B 本题解释: B。根据效率与时间成反比,可得正常200天的工作,效率下降后需要200÷ (1-20%) =250天,故需推迟50天。
21、共计33个三角形和四边形,有111个角,则四边形的个数为_____。
A: 10B: 11C: 12D: 13
参考答案: C 本题解释: C [解析] 设四边形的个数为x,由题意可得:4x+(33-x)×3=111,解得x=12,即应该有12个四边形。故本题选C。
22、杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?_____
A: 3.90 B: 4.12 C: 4.36 D: 4.52
参考答案: D 本题解释:【答案】D。解析:三次的单价分别为5、5×80%=4、4×80%=3.2元。最外层有货物(7-1)×4=24个,中间层有24-8=16个,最内层有16-8=8个。所以总进价为3.2×24+4×16+5×8=180.8元,要保证20%的利润率,货物定价为180.8×(1+20%)÷(24+16+8)=4.52元。
23、冷饮店规定一定数量的汽水空瓶可换原装汽水1瓶,旅游团110个旅客集中到冷饮店每人购买了1瓶汽水,他们每喝完一定数量的汽水就用空瓶去换1瓶原装汽水,这样他们一共喝了125瓶汽水,则冷饮店规定几个空瓶换1瓶原装汽水? _____
A: 8B: 9C: 10D: 11
参考答案: A 本题解释:A。110人多喝了125-110=15瓶汽水,则相当于110÷15=7……57个空瓶换一瓶汽水(不含瓶),故冷饮店规定7+1=8个空瓶换1瓶原装汽水。
24、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150D: 154
参考答案: B 本题解释: 【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
25、A、B、C三件衬衫的总价格为520元,分别按9.5折,9折,8.75折出售,总价格为474元,A、B两件衬衫的价格比为5﹕4,A、B、C三件衬衫的价格分别是多少元?()
A: 250,200,70B: 200,160,160C: 150,120,250D: 100,80,340
参考答案: B 本题解释:设A,B,C三件衬衫的价格分别为
,
,
,则可以列方程组:
,
,
,解得
,
,
,所以选B。
26、某校下午2点整派车去某厂接劳模作报告,往返须1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点40分到达。问汽车的速度是劳模的步行速度的几倍? _____
A: 4B: 6C: 7D: 8
参考答案: D 本题解释:D。【解析】本题要画图辅助,假设全程距离为1,汽车来回的时间为1小时,所以,其速度为1,汽车运行时间为2/3小时,所以汽车跑的路程为2/3,人走的距离为剩下1/3路程的一半,即1/6,步行的时间为1小时20分,所以步行的速度是1/6÷(1+1/3)=1/8,所以汽车的速度是劳模的8倍。选D。
27、A、B两桶中共装有108公斤水。从A桶中取出1/4的水倒入B桶,再从B桶中取出1/4的水倒入A桶,此时两桶中水的重量刚好相等。问B桶中原来有多少公斤水?_____
A: 42B: 48C: 50D: 60
参考答案: D 本题解释:【解析】D。代入排除思想。由题意,最后两桶水中各有54公斤水。代入D项60。则A桶原有水量为48公斤,48×1/4=12,12+60=72,72×1/4=18,72-18=54,满足题意。
28、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有_____筐。
A: 192B: 198C: 200D: 212
参考答案: A 本题解释:【答案】A。解析:总数加8应能被10整除,如果为A,则部门数为20;如果为D,部门数为22,则212÷22=9……14不符合题意。故选择A。
29、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:【答案】B。解析:三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。
30、10个箱子总重100公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍。问最重的箱子重量最多是多少公斤?_____
A: 200/11B: 500/23C: 20D: 25
参考答案: B 本题解释:B。设最轻的三个总重:x,不妨认为各重x/3,也就是说其余箱子不可能小于x/3,最重的三个总重为:1.5x,三个箱中最重的可能就是1.5x-2 x/3=2.5 x/3,在这种情况下,其它箱都是x/3,10个箱共重100公斤2.5 x/3+9 x/3=100x=600/23所以最重箱为(600/23)*(5/6)=500/23公斤。
31、24689-1728-2272的值为_____
A: 689B: 713C: 521D: 479
参考答案: A 本题解释:A【解析】先用心算将两个减数相加,1728+2272=4000。然后再从被减数中减去减数之和,即4689-4000=689。
32、一个边长为8的立方体,由若干个边长为l的立方体组成,现在要将大立方体表面涂漆,请问一共有多少个小立方体被涂上了颜色?_____
A: 296B: 324C: 328D: 384
参考答案: A
33、药厂使用电动研磨器将一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手动研磨器进行辅助作业。他估算如果增加2台,可在晚上8点完成,如果增加8台,可在下午6点完成。问如果希望在下午3点完成,需要增加多少台手工研磨器?_____
A: 20B: 24C: 26D: 32
参考答案: C 本题解释:【答案】C。解析:设原有电动研磨器为N台,需要增X台手工研磨器,根据牛吃草公式有:Y=(N+2)10;Y=(N+8)8,解得N=22,Y=240;代入Y=(N+X)5解得X=26,故选择C选项。
34、幼儿园里,老师将一堆桃子分给同学,如果每个同学分3个则余2个,如果每个同学分4个,则有两个同学分不到,该班有多少个同学?_____
A: 10B: 12C: 15D: 18
参考答案: A 本题解释:A【解析】设共有x个同学,由题意得3x+2=4(x-2),解得x=10。
35、A、B两地以一条公路相连。甲车从A地,乙车从B地以不同的速度沿公路匀速率相向开出。两车相遇后分别掉头,并以对方的速率行进。甲车返回A地后又一次掉头以同样的速率沿公路向B地开动。最后甲、乙两车同时到达B地。如果最开始时甲车的速率为X米/秒,则最开始时乙车的速率为()。
A: 4X米/秒B: 2X米/秒C: 0.5X米/秒D: 无法判断
参考答案: B 本题解释:答案:B。显然最初乙的速度较快,由题意知,以甲车的速率走完了一遍全程,以乙车的速率走了两遍全程,所费时间相等,故乙车速度为甲车两倍。
36、A,B两村庄分别在一条公路L的两侧,A到L的距离|AC|为1公里,B到L的距离|BD|为2公里,C,D两处相距6公里,欲在公路某处建一个垃圾站,使得A,B两个村庄到此处处理垃圾都比较方便,应建在离C处多少公里_____
A: 2.75B: 3.25C: 2D: 3
参考答案: C 本题解释:答案: C 解析:连接AB,交公路L于点E,E点就是A、B两个村庄到此处处理垃圾都比较方便的地方,三角形ACE相似于三角形BDE,则AC⊥CE=BD⊥DE,而CE+DE=6,AC=1,BD=2,解得CE=2,故应建在离C处2公里。
37、
38、小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差_____。
A: 4岁B: c+4岁C: 5岁D: c-3岁
参考答案: C 本题解释:【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
39、某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少元钱? _____
A: 550B: 600C: 650D: 700
参考答案: B 本题解释:【答案】B。解析:若付款时不满400元,则原价为384.5÷95%÷85%元,结果为非整数,没有选项符合;若付款时满400元,则原价为(384.5+100)÷95%÷85%=600元,选择B。
40、甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?_____
A: 30B: 240C: 480D: 720
参考答案: D 本题解释:【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。
41、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150 D154
参考答案: B 本题解释: 【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
42、有一批书要打包后邮寄,要求每包内所装书的册数都相同,用这批书的7/12打了14个包还多35本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?_____
A: 1000B: 1310C: 1500D: 1820
参考答案: C 本题解释: C 解析: 由已知条件,全部书的7/12打14包还多35本,可知全部书的1/12打2包还多5本,即全部书的5/12打10包还多25本,而余下的是5/12加35本打11包。所以,(35+25)÷(11-10)=60本,1包是60本,这批书共有(14+11)×60=1500(本)。故本题正确答案为C。
43、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?_____
A: 15人B: 16人C: 17人D: 18人
参考答案: A 本题解释:A【解析】利用三交集公式A+B+C=AUBUC+AnB+BnC+AnC-AnBnC(AnBnC是指语文,数学,英语三个都参加的人,AUBUC是只总人数),A+B+C=17+30+13,AnBnC=5,AUBUC=35,所求为AUBUC-(AnB+BnC+AnC)+AnBnC。 方便解法:参加一个小组的为x人,两个小组的为y人,x+y+5=35,x+2y+3×5=17+30+13,x=15。
44、袋子里红球与白球的数量之比为19∶13,放入若干个红球后,红球与白球的数量之比变为5∶3,再放入若干个白球后,红球与白球的数量之比为13∶11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球?_____
A: 650 B: 720 C: 840 D: 960
参考答案: D 本题解释:
45、同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米。若单独打开A管,加满水需2小时40分钟。则B管每分钟进水多少立方米?_____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:由A、B管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可以灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180—160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故选B。
46、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? _____
A: 10B: 8C: 6D: 4
参考答案: B 本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。
47、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
48、某单位要公开考试选拔一批基层干部,报名参加的男职工与女职工的人数之比是4:3。结果录取91人,其中男职工与女职工的人数之比是8:5。未被录取的人员中,男职工与女职工的人数之比是3:4。问共有多少人报名?_____
A: 119B: 120C: 124D: 125
参考答案: A 本题解释:A。
49、某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口_____。
A: 30万B: 31.2万C: 40万D: 41.6万
参考答案: A 本题解释:【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
50、123456788×123456790-123456789×123456789=_____。
A: 0B: 1C: 2D: -1
参考答案: D 本题解释: D [解析] 原式=(123456789-1)×(123456789+1)-1234567892=1234567892-1-1234567892=-1故选D。
51、四个学生做加法练习,任写一个六位数,然后把个位数字(不等于0)移到这个数的最左边产生一个新的六位数,最后把这个新六位数与原数相加,分别得到以下四个六位数。则哪个结果有可能正确? _____
A: 172536B: 568741C: 620708D: 845267
参考答案: C 本题解释: 
52、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训? _____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:【解析】D。本题可直接看出答案,乙教室一次45人,共有1290人,所以乙次数一定为偶数,又因为一共27次,所以甲一定为奇数,直接选15。
53、小强前三次的数学测验平均分是88分,要想平均分达到90分以上,他第四次测验至少要得多少分?_____
A: 98分B: 92分C: 93分D: 96分
参考答案: D 本题解释:【答案】D。解析:如果第四次测验后平均分数达到90分,则总分为90×4=360(分),第四次测验至少要360-88×3=96(分)。故正确答案为D。
54、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。
55、某班有50位同学参加期末考试,结果英文不及格的有15人,数学不及格的有19人,英文和数学都及格的有21人。那么英文和数学都不及格的有_____人。
A: 4B: 5C: 13D: 17
参考答案: B 本题解释:本题正确答案为B。解析:设英文和数学都不及格的有x人,由容斥原理可得15+19-x=50-21,得x=5,故选B。
56、小张数一篇文章的字数,二个二个一数最后剩一个,三个三个一数最后剩一个,四个四个一数最后剩一个,五个五个一数最后剩一个,六个六个一数最后剩一个,七个七个一数最后剩一个,则这篇文章共有多少字?_____
A: 501B: 457C: 421D: 365
参考答案: A 本题解释:答案:A【解析】甲=丙×(1+20%)×(1+20%)=144%丙,则甲比丙多44%。
57、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。
58、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。
由图可知;只参加一个项目的有l+2=3=6名。
59、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 15 B: 14 C: 13 D: 12
参考答案: D 本题解释:D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。
60、画一个边长为2cm的正方形,再以这个正方形的对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,则第三个正方形面积为_____平方厘米。
A: 32B: 16C: 8D: 4
参考答案: C 本题解释:C由题可知第2个正方形对角线长为2cm;则第三个正方形的面积为(2)2=8(平方厘米);正确答案为C。
61、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元捐给“希望工程”。因此小组必须在几天后增加一个人。增加的这个人应该从11月_____日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱。
A: 18B: 24C: 14D: 20
参考答案: D 本题解释:D[解析]还缺3000-1764=1236(元),从11月12日~12月9日还有30+9-12+1=28(天),这28天中,(原来小组中)每人可挣3×28=84(元)。因为1236÷84=14……60,所以原有14人,必须增加一个人挣60元。60÷3=20(天),30+9-20+1=20,所以增加的这个人应该从11月20日起去打工。
62、一只装有动力桨的船,其单独靠人工划船顺流而下的速度是水流速度的3倍,现在该船靠人工划动从a地到顺流到达b地,原路返回时只开足动力桨行驶,用时比来时少 ,问船在静水中开足动力桨行驶的速度是人工划桨的速度的多少倍? _____
A: 2 B: 3 C: 4 D: 5
参考答案: B 本题解释:【答案】B【解析】假设水流速度为“1”,a地到b地的距离为15。则人工划船的顺流速度为3,人工划船的静水速度为3-1=2。人工划船从a地顺流到b地时间为15÷3=5,故动力桨从b地逆流到a地时间为5×(1- )=3,故动力桨的逆流速度为15÷3=5,动力桨的静水速度为5+1=6。因此,船在静水中开足动力桨行驶的速度是人工划桨的速度的6÷2=3倍。
63、某A、B、C三地的地图如下图所示,其中A在C正北,B在C正东,连线处为道路。如要从A地到达B地,且途中只能向南、东和东南方向行进,有多少种不同的走法()
A: 9B: 11C: 13D: 15
参考答案: D 本题解释:【答案】D。解析:从A点出发从上向下总共4个路口,按照题目要求,第一个路口到B地有3种走法;第二个路口在第一个路口路线基础上加了2种走法,共5种走法;第三个路口在第二个路口路线的基础上又加了一条路线,共6种走法;最后一个路口只有一个走法。所有总计15种走法。
64、一批布料,全部用来做上衣可做60件,全部用来做裤子可做40条,现在做上衣、裤子、裙子各5件,恰好用去全部布料的1/4,剩下布料全部做裙子,则还可以做多少条?_____
A: 80B: 90C: 100D: 110
参考答案: B 本题解释:B【解析】设布料总量为120单位,则每件上衣需2单位布料,每条裤子需3单位布料,又上衣、裤子、裙子各做5件,用去︰120×1/4=30单位,所以每条裙子需1单位布料,则可再生产裙子︰(l20-30)÷1=90(条),故答案为B选项。
65、林文前年买了8000元的国家建设债券,定期3年。到期他取回本金和利息一共10284.8元。这种建设债券的年利率是多少?_____
A: 9.52%B: 9.6%C: 8.4%D: 9.25%
参考答案: A 本题解释:A。【解析】求利息的公式:利息=本金×利率×时间,可得出:利率=利息÷时间÷本金。而他3年所得的利息是:10284.8-8000=2284.8(元);这样即可求出这债券的年利率是多少。(10284.8-8000)÷3÷8000=2284.8÷3÷8000=761.6÷8000=0.0952=9.52%。
66、某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?_____
A: 50%B: 40%C: 30%D: 20%
参考答案: A 本题解释:【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。
67、有14个纸盒,其中有装1只球的,也有装2只和3只球的。这些球共有25只,装1只球的盒数等于装2只球和3只球的盒数之和。装3只球的盒子有多少个?_____
A: 7B: 5C: 4D: 3
参考答案: C 本题解释: C【解析】设装有3只球的盒子有x个,装有2只球的盒子有y个,则装有1只球的盒子有(x+y)个。由题意可得:x+y+(x+y)=14(x+y)+3x+2y=25故x=4,y=3。
68、把一根钢管锯成两段要4分钟,若将它锯成8段要多少分钟?_____
A: 16B: 32C: 14D: 28
参考答案: D 本题解释:【答案】D。解析:解析1:这是一个剪绳问题,最简单的方法是数切口,把一根钢管锯成两段有一个切口,并且需要4分钟,若将它锯成8段,将有7个切口,则一共需要7×4=28分钟,故正确答案为D。
69、甲、乙、丙三队在A、B两块地植树,A地要植树900棵,B地要植树1250棵,已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?_____
A: 5B: 7C: 9D: 11
参考答案: D 本题解释:D【解析】 植树共需(900+1250)÷(24+30+32)=25(天)。乙应在A地干(900-24×25)÷30=10(天),第11天转到B地。故本题正确答案为D。
70、某单位有78个人,站成一排,从左边向右数,小王是第50个,从右边向左数,小张是第48个,则小王和小张之间有多少个人? _____
A: 16B: 17C: 18D: 20
参考答案: C 本题解释:C。解析:小王到小张共有48-(78-50)=20人,所以,两人之间有18人。SA=(180-40×2)2=10000(平方厘米),SB=(180-40×2)×40÷2=2000(平方厘米),所求面积为SA+4SB=18000(平方厘米)。
71、如果a、b均为质数,且3a+7b=41,则a+b=_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:C。a=2,b=5符合题意,选C。
72、毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟? _____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:A。若要时间最短,则一定要让耗时最长的两头牛同时过河。先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,共用时5+8+3=16分钟。
73、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?_____
A: 星期一B: 星期五C: 星期二D: 星期四
参考答案: C 本题解释:C解析:此题乍看上去是求9,6,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,7,8的最小公倍数。既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。(10,7,8的最小公倍数是5×2×7×4=280。280÷7=40,所以下次相遇肯定还是星期二。)
74、从12时到13时,钟的时针与分针可成直角的机会有_____。
A: 1次B: 2次C: 3次D: 4次
参考答案: B 本题解释:【答案解析】一个小时内成直角只有两次,选B。
75、筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10B: 10.12C: 11.16D: 13.50
参考答案: C 本题解释: C解析:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是720×15.5=11160(米)。故本题选C。
76、有甲、乙两汽车站,从甲站到乙站与从乙站到甲站每隔10分同时各发车一辆,且都是1小时到达目的地。问某旅客乘车从甲站到乙站,在途中可看到几辆从乙站开往甲站的汽车?_____
A: 9B: 13C: 14D: 11
参考答案: D 本题解释:D 【解析】某旅客所乘之车在甲站起动时,正好有一辆从乙站开来的车到站停车;同样,当该旅客所乘之车到达乙站时,正好有一辆车从乙站开出,这两辆车均不算该旅客在“途中”看到的,这时,下一辆从乙站开来的汽车离甲站还有10分钟的路程,这辆车与该旅客所乘的车相向而行,相遇时,离甲站有10÷2=5(分钟)的路程。由此可推知,该旅客在途中每隔5分钟就可看到一辆从乙站开往甲站的车。所以从甲站到乙站,该旅客在途中看到60÷5-1=11(辆)从乙站开来的车。
77、一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?_____
A: 121B: 81C: 96D: 105
参考答案: D 本题解释:D[解一]由题意可得空心方阵再往里一层的总人数是:9+7=16(人),每边人数为:16÷4+1=5(人);所以3层空心方阵最外层每边人数为:5+2×3=11(人),总人数为:(11-3)×3×4=96(人);这队战士的总人数是:96+9=105(人)。[解二]相邻两层的人数之差为8人,最里层的人数为9+7+8=24人,次里层为24+8=32人,最外层为32+8=40人,所以总人数为24+32+40+9=105人。
78、现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是_____。
A: 1/2B: 1/4C: 1/8D: 1/16
参考答案: D 本题解释:【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。
79、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:每本书的利润值下降了20%,为原来的0.8,销量增加了70%,为原来的1.7,1.7×0.8=1.36,1.36—1=0.36,即为36%。
80、有5位田径运动员争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的情况可能有_____。
A: 124种B: 125种C: 130种D: 243种
参考答案: B 本题解释: B [解析] 每项比赛的冠军都有5种可能性,所以获得冠军的情况有C15×C15×C15=125(种)。故本题选B。
81、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?_____
A: 120B: 144C: 177D: 192
参考答案: A 本题解释:【解析】A。设参加人数为N,列等式:63+89+47-46-2*24=N-15,N=120。
82、取甲种硫酸300克和乙种硫酸250克,再加水200克,可混合成浓度为50%的硫酸;而取甲种硫酸200克和乙种硫酸150克,再加上纯硫酸200克,可混合成浓度为80%的硫酸。那么,甲、乙两种硫酸的浓度各是多少?_____
A: 75%,60%B: 68%,63%C: 71%,73%D: 59%,65%
参考答案: A 本题解释:【答案】A。解析:
83、某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?_____
A: 6000 B: 12000 C: 12006 D: 12012
参考答案: A 本题解释:【答案】A。解析:这是个植树问题和盈亏问题的复合问题。植树的学生有(202+348)÷(5-4)=550个,一共栽了550×4+202=2402棵树。每边栽了2402÷2=1201棵树,因此学院路长(1201-1)×5=6000米。
84、某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲B: 乙C: 丙D: 甲或乙
参考答案: B 本题解释:B解析:此题遵循“小往大处靠”原则,先把2吨的货物移动到4吨那,这样就相当于有了6吨货物,然后在把5吨的货物也移动到6吨,综上所述,运到乙仓库最省钱。
85、如图所示,半圆与等腰三角形ABC的斜边AC相切,AB=BC=1。
问半圆的直径是多少?_____
A: AB: BC: CD: D
参考答案: C 本题解释:C
86、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:【答案】C。解析:抽屉原理问题,利用最不利原则解题。题目要求“两粒颜色相同”,“最不利”的情况就是每种颜色都只摸出来一粒,即从口袋中取出红、黄、蓝、白珠子各1粒,即取出4粒球后,再取出一粒珠子,就必有两粒颜色相同。因此,至少取出4+1=5粒才能保证摸出的珠子中有两粒的颜色相同。因此,本题答案选择C选项。
87、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?_____
A: 45B: 50C: 55D: 60
参考答案: A 本题解释:【答案】A。解析:根据蒸发前后溶质的质量不变可列方程,设蒸发后盐水质量为x千克,30%×60=40%×x,解得x=45。故选A。
88、一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是_____。
A: 9点15分B: 9点30分C: 9点35分D: 9点45分
参考答案: D 本题解释:【答案解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。
89、4532×79÷158的值是_____。
A: 2266B: 2166C: 2366D: 2362
参考答案: A 本题解释:【答案】A。解析:4532×79÷158=4532÷(158÷79)=4532÷2=2266。故正确答案为A。
90、小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动,一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。原来小虎有_____个球。
A: 12B: 5C: 8D: 20
参考答案: C 本题解释:【解析】设四个人的球数在变动后的个数为χ,可得方程(χ+2)+(χ-2)十2χ+0.5χ=45,解得χ=10,则原来小虎有10-2=8个球。
91、如果甲比乙多20%,乙比丙多20%,则甲比丙多百分之多少?_____
A: 44B: 40C: 36D: 20
参考答案: C 本题解释:答案:C【解析】这道题实际只要考虑五个五个一数最后剩一个,三个三个一数最后剩一个,即可。这两个最好思考。只有501与421一幕了然,除以5余1。而501能被3整除,只有42。
92、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师老师带领,刚好能够分配完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心剩下学员多少人? _____
A: 36 B: 37 C: 39 D: 41
参考答案: D 本题解释:【答案】D 【解析】假设原来每位钢琴教师所带学员为a人,每位拉丁舞教师带学员b人,则有76=5a+6b,因为76和6b为偶数,所以5a也为偶数,而a为质数,则只能a=2,所以b=11。因此目前培训中心剩4×2+3×11=41名学员。
93、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间是多少立方米?_____ B: 1500C: 5000D: 9000
参考答案: D 本题解释:D。【解析】进行简单的数字计算即可,250×10×4-1000×1=9000(m3)。
94、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有_____。
A: 22人 B: 28人C: 30人D: 36人
参考答案: A 本题解释:【解析】A。解答此题的关键在于弄清楚题中的数字是怎样统计出来的。一个人喜欢三种中的一种,则只被统计一次;一个人如喜欢两种,则被统计两次,即被重复统计一次;一个人如喜欢三种,则被统计三次,即喜欢看球赛、电影和戏剧的人数中都包括他,所以他被重复统计了两次。总人数为100,而喜欢看球赛、电影和戏剧的总人次数为:58+38+52=148,所以共有48人次被重复统计。这包括4种情况:(1)12个人三种都喜欢,则共占了36人次,其中24人次是被重复统计的;(2)仅喜欢看球赛和戏剧的,题中交待既喜欢看球赛又喜欢看戏剧的共有18人,这个数字包括三种都喜欢的12人在内,所以仅喜欢看球赛和戏剧的有6人,则此6人被统计了两次,即此处有6人次被重复统计;(3)仅喜欢看电影和戏剧的,题中交待既喜欢看电影又喜欢看戏剧的有16人,这个数字也应包括三种都喜欢的12人在内,所以仅喜欢看电影和戏剧只有4人,即此处有4人被重复统计。(4)仅喜欢看球赛和电影的,此类人数题中没有交待,但我们可通过分析计算出来。一共有48人次被重复统计,其中三种都喜欢的被重复统计了24人次,仅喜欢看球赛和戏剧的被重复统计了6人次,仅喜欢看电影和戏剧的被重复统计了4人次,则仅喜欢看球赛和电影的被重复统计的人次数为:48-24-6-4=14,这也就是仅喜欢球赛和电影的人数。一共有52人喜欢看电影,其中12人三种都喜欢,4人仅喜欢看电影和戏剧两种,14人仅喜欢看球赛和电影两种,则只喜欢看电影的人数为:52-12-4-14=22。
95、五人排队甲在乙前面的排法有几种?_____
A: 60B: 120C: 150D: 180
参考答案: A 本题解释: 答案【A】
96、某年级有四个班级,不算一班有210人,不算二班有199人,不算三班有196人,不算四班有205人,问:这个年级共有_____人?
A: 240B: 270C: 320D: 3 60
参考答案: B 本题解释:B【解析】设一、二、三、四班的人数分别为a,b,c,d人。不算一班的人数是210人,即b+c+d=210;不算二班的人数是199人,即a+c+d=199;不算三班的人数是196人,即a+b+d=196;不算四班的人数为205人,即a+b+c=205;四个式子相加:3(a+k+c+d)=810。a+b+c+d=270,即这个年级共有270人,故应选B。
97、一个蓄水池有甲、乙、丙三个水管。如果同时打开甲、乙两管,5个小时就能灌满水;如果同时打开乙、丙两管,4个小时就能灌满水。如果先打开乙管6小时,再同时打开甲、丙两管,2小时就能灌满。则单独打开乙管需要几个小时才能灌满水?_____
A: 12B: 15C: 20D: 22
参考答案: C 本题解释:C。
98、
99、超市经理为某商品准备了两种促销方案,第一种是原价打7折;第二种是买二件赠一件同样商品。经计算,两种方案每件商品利润相差0.1元,若按照第一种促销方案,则100元可买该商品件数最大值是_____
A: 33B: 47C: 49D: 50
参考答案: B 本题解释:【答案】B。解析:设该商品原价为x,则第一种方案下,三件促销价格为2.1x,第二种方案下,三件促销价格2x,两种方案差价为0.1x。根据题意,两种方案每件商品的利润差为0.1元,则三件商品差价0.3元,即0.1x=0.3,解得x=3元,那么按照第一种促销方案,商品售价2.1元,100元最多可以购买该商品47件,选择B项。
100、赵先生34岁,钱女士30岁,一天,他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说∶他们三人的年龄各不相同,三人的年龄之积是2 450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁? _____
A: 42B: 45C: 49D: 50
参考答案: C 本题解释:【答案】C 解析∶2450=2×5×5×7×7,三人年龄之和为64,分析可知当三人年龄分别为5、10、49时符合题意,年龄最大者是49岁。