设为首页    加入收藏

村官考试省级导航

A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 

村官考试行测常考点-【数学运算】题库(二)
2016-06-16 22:18:02 来源:91考试网 作者:www.91exam.org 【
微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!

1、某服装厂要生产一批某种型号的学生服,已知每3米长的某种面料可做上衣2件。或做裤子3条,计划用300米长的这种布料生产学生服,应用多少米布料产生上衣,才能恰好配套?_____
A: 120B: 150C: 180D: 210
参考答案: C 本题解释:答案:C【解析】3米长可做上衣2件,或裤子3条,则300米布料可做上衣200件,或裤子300条,即如需成套,则上衣和裤子的数量必须同样多,那么上衣所用布料当为3/5,即180米,裤子为120米,共可做120套服装。所以答案为选项C。



2、有两只相同的大桶和一只空杯子,甲桶装牛奶,乙桶装糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合液倒人甲桶,请问,此时甲桶内的糖水多还是乙桶内的牛奶多?_____。
A: 无法判定B: 甲桶糖水多C: 乙桶牛奶多D: 一样多
参考答案: D 本题解释:D【精析】假设乙桶内有N杯糖水,从甲中取出1杯牛奶倒入乙桶,乙桶中有l杯牛奶和N杯糖水。均匀后,再从乙桶取出一杯糖水和牛奶的混合物倒入甲桶,这杯混合物中有牛奶1/N+1杯有糖水N/N+1杯,因此乙桶中剩余的牛奶有N/N+1杯,而倒入甲桶中的糖水也有而N/N+1杯。甲桶内的糖水和乙桶内的牛奶一样多。



3、小新做一道加法题,由于粗心将一个加数万位上的3看成8,百位上的1看成7,个位上的9看成6,算得的结果是95050。则这道加法题的正确答案本应是_____。
A: 44447B: 45453C: 44453D: 45405
参考答案: C 本题解释:C【解析】本题只要找出错看的加数和本来的加数之间的差值,用错误结果加上少加的数,减去多加的数,即可得出正确结果。即正确答案=95050-(80000-30000)-(700-100)+(9-6)=95050-50000-600+3=44453由此可知本题正确答案为C。



4、筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10B: 10.12C: 11.16D: 13.50
参考答案: C 本题解释:C解析:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是,720×15.5=11160(米)。故本题选C。



5、某计算机厂要在规定的时间内生产一批计算机,如果每天生产140台,可以提前3天完成;如果每天生产120台,就要再生产3天才能完成。问规定完成的时间是多少天?_____
A: 30B: 33C: 36D: 39
参考答案: D 本题解释:答案:D【解析】解答此题可以同时使用代入法和方程法。为快速解题可首先考虑方程法,设规定时间为x天,则(x-3)×l40=(x+3)×l20,解得x=39。故选D。



6、从12时到13时,钟的时针与分针可成直角的机会有_____。
A: 1次B: 2次C: 3次D: 4次
参考答案: B 本题解释:【答案解析】一个小时内成直角只有两次,选B。



7、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?_____
A: 900B: 180C: 270D: 500
参考答案: D 本题解释:【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18%,可知女警官有500人。



8、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7 B: 10 C: 15 D: 20
参考答案: B 本题解释:【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10



9、三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?_____
A: 21B: 27C: 33D: 39
参考答案: C 本题解释:【答案解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。



10、某种型号拖拉机,前轮直径为50厘米,后轮直径为150厘米,拖拉机前进时,前轮转了240圈,求后轮转了多少圈?_____
A: 60B: 40C: 30D: 80
参考答案: D 本题解释:【解析】D。圆的周长与其直径成正比。



11、在一次展览会上,展品上有366部手机不是A公司的,有276部手机不是B公司的,但两公司的展品共有378部。问B公司有多少部手机参展?_____
A: 134B: 144C: 234D: 244
参考答案: C 本题解释:C。其它公司的有(366+276-378)/2=132部,所以B公司有366-132=234,选C。



12、一桶农药,加入一定量的水稀释后,浓度为15%;再加入同样多的水稀释,农药的浓度变为12%,若第三次再加入同样多的水,农药的浓度将变为多少?_____
A: 8%B: 10%C: 11%D: 13%
参考答案: B 本题解释:B。【解析】设δ加水稀释前农药量为x,?次所加水量为a,所求浓度为y%,则(x+a)15%=(x+2a)12%=(x+3a)y%,解得y%=10%。



13、甲、乙、丙、丁四人今年分别是16、12、11、9岁。问多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?_____
A: 4B: 6C: 8D: 12
参考答案: B 本题解释: 【解析】B。解法一、设x年前满足条件,则(16-x)+(12-x)=[(11-x)+(9-x)]×2;解法二、两组年龄差为8岁(分别作差5+3=8),当第一组为第二组两倍时肯定是16与8岁。现在第一组和为28岁,需要倒退12岁到16岁,需要6年,因为两个人一年一共倒退2岁。



14、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数比原数的3倍少39。求这个三位数_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释: 【解析】C。代入验证,A项符合题意。故选C。



15、“红星”啤酒开展“7个空瓶换l瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期问共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?_____
A: 296B: 298C: 300D: 302
参考答案: B 本题解释:由题可知,6个空瓶可以换一个瓶子里面的啤酒,298÷6=49……4,只有49+298=347。



16、用直线切割一个有限平面,后一条直线与此前每条直线都要产生新的交点。第1条直线将平面分成2块,第2条直线将平面分成4块,第3条直线将平面分成7块,按此规律将该平面分为22块需:_____
A: 5条直线B: 6条直线C: 7条直线D: 8条直线
参考答案: A 本题解释:增加的面的个数:交第一条直线,分割两个面,以后交一条直线,则增加的面的个数为交点增加数加1,即(n-1+1) = n 故对n条直线,面数为 n + (n-1) + …… + 2 + 2 = n(n+1)/2 +1 注意:开始面上只有1条直线时已有2个面,故最小为2。总结下:对第n条直线: 面数:n(n+1)/2 +1 故答案为6。



17、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:答案:D 解析:根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。



18、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。



19、地球表面的陆地面积和海洋面积之比是29︰71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是_____
A: 284︰29B: 113︰55C: 371︰313D: 171︰113
参考答案: D 本题解释:【解析】D。根据题干中的比例关系,可以推断出南、北半球的海洋面积之比为:



20、小木、小林、小森三人去看电影,如果用小木带的钱去买三张电影票,还差0.55元;如果用小林带的钱去买三张电影票,还差0.69元;如果用三人带去的钱买三张电影票,就多0.30元,已知小森带了0.37元,那么买一张电影票要用多少元?_____
A: 1.06B: 0.67C: 0.52D: 0.39
参考答案: D 本题解释:D【解析】设每张电影票x元,则小木的钱数为3x-0.55元,小林的钱数为3x-0.69元,小森的钱数为0.37元。三人的钱数和为3x+0.30元,即可得出:3x-0.55+3x-0.69+0.37=3x+0.30,求得x=0.39(元)。



21、有一只怪钟,每昼夜设计成10小时,每小时100分钟,当这只怪钟显示5点时,实际上是中午12点。当这只怪钟显示8点50分时,实际上是什么时间? _____
A: 17点50分B: 18点10分C: 20点O4分D: 20点24分
参考答案: D 本题解释:D。怪钟时间从5点走到8点50分的3个小时50分钟,相当于标准时间一天的35%,即24×0.35=8.4小时。因此实际时间为12+8.4=20.4时,即20点24分。



22、5人参加一次小测验,试卷上的10道题目均为4选1的单项选择题,若5个人全部答完所有题目,那么不同的答卷最多有_____种。
A: 410B: 510C: 40D: 200
参考答案: A 本题解释:A【解析】从第1题开始最多可能出现4种不同的答案,然后在做第2题时也可能有4种不同的答案,直到第10题依然会出现4种答案。符合排列组合中乘法原理,因此不同的答卷一共会出现:4×4×4×…×4=410(种)。故答案为A。



23、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222 B: 1232 C: 1322 D: 1332
参考答案: D 本题解释:D。因为1、2、3之和可被3整除,故而1、2、3所组成的没有重复数字的三位数都能被3整除,而这些数字相加之和也必能被3整除,只有D项能被3整除,为正确答案。根据排列组合原理,可知该没有重复数字的三位数共有6个,1、2、3三个数在个、十、百位上各出现两次,即(1+2+3)×2=12,也就是说这一数字当为12+120+1200=1332。



24、一列普通客车以每小时40公里的速度在9时由甲城开往乙城,一列快车以每小时58公里的速度在11时也由甲城开往乙城,为了行驶安全,列车间的距离不应当少于8公里,则客车最晚应在_____时在某站停车让快车通过。
A: 14B: 15C: 16D: 13
参考答案: B 本题解释:B解本题的关键是求出两列火车间的速度差,由题知两列火车的速度差为18公里/小时;从9小时到11时普通客车所行使的路程为40×2=80公里,由题中列火车间最少距离的规定,可设的这一个速度差行使普通列车先行使80公里的路程所需时间为x,所可列方程为80-18x≥8,解之得x≤4,故该普通列车应在15时在某站停车让快车通过。



25、有面值为8分、1角和2角的三种纪念邮票若干张,总价值为1元2角2分,则邮票至少有_____。
A: 7张B: 8张C: 9张D: 10张
参考答案: C 本题解释:C【解析】要使邮票最少,则要尽量多的使用大面额邮票,所以要达到总价值,2角的邮票要使用4张,1角的邮票要使用1张,8分的邮票要4张,这样使总价值正好为1元2角2分,所以要用9张。



26、有5位田径运动员争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的情况可能有_____。
A: 124种B: 125种C: 130种D: 243种
参考答案: B 本题解释: B [解析] 每项比赛的冠军都有5种可能性,所以获得冠军的情况有C15×C15×C15=125(种)。故本题选B。



27、将半径分别为4厘米和3厘米的两个半圆如图放置,则阴影部分的周长是_____
A: 21.98厘米 B: 27.98厘米 C: 25.98厘米 D: 31.98厘米
参考答案: B 本题解释: 【解析】B。先算出两个半圆的周长是πr=3.144+3.143=21.98,剩下两边的长度,已知一条为4厘米,另一条为=(4+6)-8=2,所以阴影部分的周长=2+4+21.98=27.98。



28、5人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人最重可能重_____
A: 80斤 B: 82斤 C: 84斤 D: 86斤
参考答案: B 本题解释:B。【解析】5个80斤的则为400斤,剩余23斤,分一下。 从0、1、2、3、4、5、6、7中选,最轻只有选2了,如选3,则3、4、5、6、7加起来超过23。所以为82斤。



29、某船第一次顺流航行21千米又逆流航行4千米,第二天在同 河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是_____。
A: 2. 5:1 B: 3:1 C: 3. 5:1 D: 4:1
参考答案: B 本题解释:【解析】B。设船本身速度为 X 千米 / 小时,水流速度为 Y 千米 / 小时,则顺水船速为 (X+Y) 千米 / 小时,逆水船速为 (X-Y) 千米 / 小时。依据题意可得: 21X+Y+4X-Y = 12X+Y+7X-Y ,由此可得 X+YX-Y = 3 ,即顺水船速是逆水船速的 3 倍。



30、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: C 本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。



31、从一张1952mm×568mm的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断地重复,最后一共可剪得正方形多少个?_____
A: 8B: 10C: 12D: 14
参考答案: D 本题解释:从长1952mm、宽568mm的长方形纸片上首先可剪下边长为568mm的正方形,这样的正方形的个数恰好是1952除以568所得的商,而余数恰好是剩下的长方形的宽,于是有:1952÷568=3…248,568÷248=2…72,248÷72=3…32,72÷32=2…8,32÷8=4,因此一共可得到正方形3+2+3+2+4=14(个),故正确答案为D。



32、一个长方形,它的周长是32米,长是宽的3倍。这个长方形的面积是多少平方米?_____
A: 64B: 56C: 52D: 48
参考答案: D 本题解释:D设宽为x则长为3x,则2(x+3x)=32,则x=4,故面积为48平方米。



33、甲、乙两校共有毕业生180人,两校各买了一批纪念册,给本校毕业生每人一本后,甲校余116本,乙校余114本。经研究两校各向彼校毕业生每人送一本纪念册,送后甲校还比乙校多剩10本。问甲校的毕业生人数比乙校的毕业生人数多多少人?_____
A: 20人B: 16人C: 10人D: 8人
参考答案: D 本题解释:【解析】解一:由题意知,两校各给本校毕业生每人一本后共余下116+114=230本。两校再各向彼校毕业生每人送一本后共余下230-180=50本,而这时甲校比乙校多余下10本,故知此时甲校还余下(50+10)÷2=30本,乙校还余下(50-10)÷2=20本。而两校各给对方每个毕业生送了一本后,相当于两校买的纪念册各发了180本,所以甲校买了30+180=210本,乙校买了20+180=200本,甲、乙两校的毕业生人数分别是210-116=94人,200-114=86人。二者之差94-86=8人。故选D。解二:第一次分发毕业纪念册后,甲校余下的比乙校多116-114=2本,给彼校分发完毕后,甲校比乙校剩余的多10本,由此可推断甲校学生比乙校多10-2=8人,故选D。



34、32头牛和若干匹马的价钱相等,如果把牛的头数和马的头数互换,马的头数再减少14头,此时二者的价钱又相等了。请问,每头牛和马的价格比为多少?_____
A: 2∶1 B: 3∶2 C: 4∶3 D: 3∶4
参考答案: D 本题解释:【答案】D。解析:设32头牛和x匹马的价钱相同,则交换后,x头牛和32-14=18头马的价钱相同,则32∶x=x∶18,解得x=24。故每头牛和马的价格比为24∶32=3∶4。



35、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86
参考答案: B 本题解释: B【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。



36、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。



37、甲、乙、丙、丁、戊共5个人,每人至少订了A、B,C、D、E这5种报纸中的一种。已知甲、乙、丙、丁分别订了2、2、4、3种报纸,而A、B、C、D这4种报纸分别有1、2、2、2个人订。那么报纸E有几个人订?_____
A: 1B: 3C: 4D: 5
参考答案: D 本题解释:D。甲、乙、丙、丁共订了2+2+4+3=11份报纸,而且戊至少订了1种报纸,所以这五个人至少订了12份报纸:A、B、C、D这4种报纸共被订了1+2+2+2=7份。所以E至少被订了12-7=5份。因为共有5个人,所以E最多能被订5份,故这五种报纸最多被订了12份。戊只能是订了1种报纸,报纸E有5个人订。



38、



39、某运输队有大货车和小货车24辆,其中小货车自身的重量和载货量相等,大货车的载货量是小货车的1.5倍,自身重量是小货车的2倍。所有车辆满载时共重234吨,空载则重124吨,那么该运输队的大货车有多少辆? _____
A: 4B: 5C: 6D: 7
参考答案: D 本题解释:D【解析】设大货车数量为x,小货车自重量为a,小货车数量为24-x,列方程x?2a+(24-x)?a=124[x?2a+(24-x)?a]+x?1  5a+(24-x)?a=234 解得x=7。故选D。



40、把一根圆木锯成3段需要8分钟,如果把同样的圆木锯成9段需要多少分钟?_____
A: 24分钟B: 27分钟C: 32分钟D: 36分钟
参考答案: C 本题解释:【答案】C。解析:圆木锯成三段有2个切口,2个切口需要用时8分钟,锯成9段有8个切口,则8个切口需要用时8÷2×8=32(分钟),故正确答案为C。



41、某书店对顾客有一项优惠,凡购买同种书百册以上,按书价90%收款。某单位到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5,只有甲种书得到了90%的优惠,这时买甲种书所付总钱数是买乙种书所付总钱数的2倍,已知乙种书每本定价1.5元,那么优惠前甲种书每本原价是_____元。
A: 3B: 2.5C: 2D: 1.5
参考答案: C 本题解释:C【解析】设优惠前甲种书每册定价χ元。设甲种书册数为1,乙种书册数为3/5,则甲种书总价钱为90%χ×1,乙种书总价钱的2倍为1.5×3/5×2,此时有以下相等关系:90%χ=1.5×3/5×2,解得χ=2。即优惠前甲种书每册定价2元。



42、0, 1, 1, 1, 2, 2, 3, 4八个数字做成的八位数,共可做成______个。_____
A: 2940B: 3040C: 3142D: 3144
参考答案: A 本题解释:A【解析】不妨先把这8个数字看作互不相同的数字,0暂时也不考虑是否能够放在最高位,那么这组数字的排列就是P(8,8),但是,事实上里面有3个1,和2个2,3个1在P(8,8)中是把它作为不同的数字排列的,那就必须从P(8,8)中扣除3个1的全排列P(3,3),因为全排列是分步完成的,在排列组合中,分步相乘,分类相加。可见必须通过除掉P(3,3)才能去掉这部分重复的数字形成的重复排列。2个2当然也是如此,所以不考虑0作为首位的情况是 P88/(P33×P22)。现在再来单独考虑0作为最高位的情况有多少种:P77/(P33×P22),最后结果就是:P88/(P33×P22)-P77/(P33×P22)=2940。



43、从某车站以加速度为1/18米/秒2始发的甲列车出发后9分钟,恰好有一列与甲列车同方向,并以50米/秒作匀速运行的乙车通过该车站,则乙车运行多少分钟与甲车距离为最近?_____
A: 9B: 3C: 5D: 6
参考答案: D 本题解释:D。当甲车速度小于乙车时,乙车逐渐缩短与甲车的距离;当甲车速度大于乙车时,两车之间距离拉大;仅当两车速度相同时,两车距离最小。根据Vt=Vo+at,可得50=1/18×9×60+1/18×t,求得t=360秒=6分钟。



44、二十几个小朋友围成一圈,按顺时针方向一圈一圈地连续报数。如果报2和200的是同一个人,那么共有_____个小朋友。
A: 22B: 24C: 27D: 28
参考答案: A 本题解释:A【解析】小朋友的人数应是(200-2)=198的约数,而198=2×3×3×11。约数中只有2×11=22符合题意。



45、某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?_____
A: 6000 B: 12000 C: 12006 D: 12012
参考答案: A 本题解释:【答案】A。解析:这是个植树问题和盈亏问题的复合问题。植树的学生有(202+348)÷(5-4)=550个,一共栽了550×4+202=2402棵树。每边栽了2402÷2=1201棵树,因此学院路长(1201-1)×5=6000米。



46、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222B: 1232C: 1322D: 1332
参考答案: D 本题解释: 【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。



47、在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是_____秒。
A: 80B: 100C: 120D: 140
参考答案: D 本题解释:【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。



48、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?_____
A: 1千米 B: 1.2千米C: 1.5千米D: 1.8千米
参考答案: A 本题解释:【答案】A。解析:直线多次相遇问题。第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5千米。从图上可看出,第二次相遇处离乙村2千米,因此,甲、乙两村距离是10.5-2=8.5千米。每次相遇甲乙二人路程和都比上次相遇多2倍的两地间距。第四次相遇时,两人已共同走了(3+2+2)倍的两村距离,其中张走了3.5×(2×4-1)=24.5千米,24.5=8.5+8.5+7.5千米。因此第四次相遇处,离乙村8.5-7.5=1千米。



49、将两位数的个位数与十位数互换后所得的数是原来的十分之一,这样的两位数有多少个?_____
A: 6B: 9C: 12D: 15
参考答案: B 本题解释:B【解析】设原数字的个位数字为x,十位数字为y,则得:(10y+x)X1/10=10x+y化简得x=0个位数字是0的两位数有10,20,30,40,50,60,70,80,90,共9个,故正确答案为B。



50、科学家进行一项实验,每隔五小时做一次记录。已知做第十二次记录时,挂钟的时针恰好指向9,那么第一次记录时,时针指向_____。 B: 1C: 2D: 3
参考答案: C 本题解释:【答案】C。解析:做第十二次记录时,离第一次记录共有55小时,即时针转4圈又7小时后时针指向9,那么开始时时针指向2,因此,本题答案为C。



51、计算1/4+3/8+7/16+15/32+31/64+63/128+127/256+255/512+511/1024=?_____
A: 3×(513/1024)B: 3×(1023/1024)C: 4×(1/1024)D: 4×(511/1024)
参考答案: C 本题解释:【答案】C 解析∶原式=1/2-1/4+1/2-1-8+……+1/2-1/1024=4+1/1024=4×(1/1024)。



52、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?_____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:答案:B【解析】一位偶数有0、2、4、6、8,共5个。考虑倒数第二位,因为相邻数字不相同且为偶数,则有4种选择。倒数第三位与倒数第二位不相同,也有4种选择,共有4×4=16种情况。



53、一艘游轮从甲港口顺水航行至乙港口需7小时,从乙港口逆水航行至甲港口需9小时。问如果在静水条件下,游轮从甲港口航行至乙港口需多少小时?_____
A: 7.75B: 7.875C: 8D: 8.25
参考答案: B 本题解释:



54、甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。



55、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。



56、一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×138=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。



57、一条路上依次有A、B、C三个站点,加油站M恰好位于AC的中点,加油站N恰好位于BC的中点。若想知道M和N两个加油站之间的距离,只需要知道哪两点之间的距离?_____
A: CNB: BCC: AMD: AB
参考答案: D 本题解释:D。



58、有一1500米的环形跑道,甲乙两人同时同地出发,若同方向跑50分钟后,甲比乙多绕整一圈;若以相反方向跑2分钟后二人相遇。则乙的速度为_____。
A: 330米/分钟B: 360米/分钟C: 375米/分钟D: 390米/分钟
参考答案: B 本题解释:【答案】B。解析:同向跑时,50分钟后甲与乙第一次相遇,则甲与乙的速度差为1500÷50=30米/分钟;反向跑时,2分钟后甲乙二人第一次相遇,则甲与乙的速度和为1500÷2=750米/分钟,故乙的速度为(750-30)÷2=360米/分钟。



59、某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%。问:此人盈利或亏损的情况如何?_____
A: 挣了8元 B: 亏了8元 C: 持平 D: 亏了40元
参考答案: B 本题解释: 【解 析】B。96×2-[96÷(1+20%)+96÷(1-20%)]=192-200=-8,亏了8元。



60、数字3、5至少都出现一次的三位数有多少个?_____
A: 48B: 52C: 54D: 60
参考答案: B 本题解释:【答案】B。解析:



61、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,而汽车的速度是他速度的5倍,则此人追上小偷需要_____
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:【解析】D。设小偷速度为V,则他的速度2V,汽车的速度10V。l0秒内小偷走了10V,但车子走了100V,所以距离是110V,而他和小偷的速度差为V,即追上小偷需要110秒。



62、若一个边长为20厘米的正方体表面上挖一个边长为10厘米的正方体洞,问大正方体的面积增加了多少? _____
A: 100cm2B: 400cm2C: 500cm2D: 600cm2
参考答案: B 本题解释:B。【解析】正方体6个面,在表面上挖一个边长为10厘米的正方体洞,使得大正方体表面积发生改变:增加的面为正方体洞凹进去的五个面,同时又使大正方体的表面积减少一个正方体洞面面积。因此,大正方体面积最终增加:10*10*5-10*10=400cm2



63、如果当“张三被录取的概率是1/2,李四被录取的概率是1/4时,命题:要么张三被录取,要么李四被录取” 的概率就是_____
A: 1/4 B: 1/2 C: 3/4D: 4/4
参考答案: B 本题解释:B。【解析】要么张三录取要么李四录取就是2人不能同时录取且至少有一人录取,张三被录取的概率是1/2,李四被录取的概率是1/4,(1/2) ×(3/4)+(1/4) ×(1/2)=3/8+1/8=1/2其中(1/2) ×(3/4)代表张三被录取但李四没被录取的概率,(1/2) ×(1/4)代表张三没被录取但李四被录取的概率。李四被录取的概率为1/4=>没被录取的概率为1-(1/4)=3/4。



64、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。



65、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价_____元。
A: 12B: 14C: 13D: 11
参考答案: B 本题解释:【答案】B。解析:设原来茶叶的销量为1,那么现在销量为3,原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。



66、用a、b、c三种不同型号的客车送一批会议代表到火车站,用6辆a型车,5趟可以送完;用5辆a型车和10辆b型车,3趟可以送完;用3辆b型车和8辆c型车,4趟可以送完。问先由3辆a型车和6辆b型车各送4趟,剩下的代表还要由2辆c型车送几趟?_____
A: 3趟B: 4趟C: 5趟D: 6趟
参考答案: B 本题解释:【答案】B。解析:方程法解题,主要求出a=2b,3b=2c,然后列方程求得选择B选项。



67、一个正三角形和一个正六边形周长相等,则正六边形面积为正三角形的:_____
A: AB: BC: CD: D
参考答案: B 本题解释:答案:B.[解析]本题为几何类题目。因为正三角形和一个正六边形周长相等,又正三角形与正六边形的边的个数比为1︰2,所以其边长比为2︰1,正六边形可以分成6个小正三角形,边长为1的小正三角形面积:边长为2的小正三角形面积=1︰4。所以正六边形面积:正三角形的面积=1×6/4=1.5。所以选B。



68、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:【答案】B。解析:三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。



69、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。



70、甲乙两个乡村阅览室,甲阅览室科技类书籍数量的1/5相当于乙阅览室该类书籍的1/4,甲阅览室文化类书籍数量的2/3相当于乙阅览室该类书籍的1/6,甲阅览室科技类和文化类书籍的总量比乙阅览室两类书籍的总量多1000本,甲阅览室科技类书籍和文化类书籍的比例为20:1,问甲阅览室有多少本科技类书籍?_____
A: 15000B: 16000C: 18000D: 20000
参考答案: D 本题解释:答案:D.[解析]假设甲阅览室科技类书籍有20x本,文化类书籍有x本,则乙阅读室科技类书籍有16x本,文化类书籍有4x本,由题意有:(20x+x)-(16x+4x)=1000,解出x=1000,则甲阅览室有科技类书籍20000本。



71、一只装有动力桨的船,其单独靠人工划船顺流而下的速度是水流速度的3倍,现在该船靠人工划动从a地到顺流到达b地,原路返回时只开足动力桨行驶,用时比来时少 ,问船在静水中开足动力桨行驶的速度是人工划桨的速度的多少倍? _____
A: 2 B: 3 C: 4 D: 5
参考答案: B 本题解释:【答案】B【解析】假设水流速度为“1”,a地到b地的距离为15。则人工划船的顺流速度为3,人工划船的静水速度为3-1=2。人工划船从a地顺流到b地时间为15÷3=5,故动力桨从b地逆流到a地时间为5×(1- )=3,故动力桨的逆流速度为15÷3=5,动力桨的静水速度为5+1=6。因此,船在静水中开足动力桨行驶的速度是人工划桨的速度的6÷2=3倍。



72、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39。求这个三位数。_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释:【解析】C。代入法。首先排除A和D;根据所成的新数比原数的3倍少39,用每个选项的最后一个数乘以3再减去,所得的数只有C中有。



73、



74、小王和小李6小时共打印了900页文件,小王比小李快50%。请问小王每小时打印多少页文件?_____
A: 60B: 70C: 80D: 90
参考答案: D 本题解释: 【解析】D。设小王每小时打印X页,因为小王比小李快50%,则小李每小时打印为X (1-50%)页,则根据题意可列:6X (1-50%)+6X=900,则X=90。



75、某仪仗队排成方阵,第一次排列若干人,结果多余10人,第二次比第一次每排增加3人结果缺少29人,仪仗队总人数是_____。
A: 400B: 450C: 500D: 600
参考答案: A 本题解释:【答案】A。解析:设第一次每排x人,共Y排,可列方程xy+10=(x+3)×y-29解得y=13,选项中减10后能被13整除的只有400,故选择A。



76、在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是_____。
A: 1644B: 1779C: 3406D: 3541
参考答案: D 本题解释:【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。



77、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。



78、某单位有185人。在某次乒乓球比赛中。有12%的男员工和12.5%的女员工参加这次比赛。则该单位男员工有多少人?_____
A: 25B: 65C: 105D: 125
参考答案: A 本题解释:A。



79、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。



80、1至1000中所有不能被5、6、8整除的自然数有多少个?_____
A: 491B: 107C: 400D: 600
参考答案: D 本题解释: D【解析】 只要求出1~1000内5的倍数、6的倍数或8的倍数或5×6,5×8,24,120的倍数,再根据容斥原理就可求得5的倍数有5、10……1000共200个6的倍数有6、12……996共166个8的倍数有8、16……共125个24的倍数有24、48……984共41个30的倍数有30、60……990共33个40的倍数有40、80……1000共25个120的倍数有120、240……960共8个根据容斥原理可知,5或6或8的倍数有(200+166+125)-(33+25+41)+8=400(个)不能被5或6或8中任一个整除的有1000-400=600(个)故本题选D。



81、李先生去10层楼的8层去办事,恰赶上电梯停电,他只能步行爬楼。他从第1层爬到第4层用了48秒,请问,以同样的速度爬到第8层需要多少秒? _____
A: 112B: 96C: 64D: 48
参考答案: A 本题解释:A【解析】假设每上一层楼的路程为一段楼梯,李先生从第1 层爬到第4 层,路程为3 段楼梯,用时48 秒,则每一段楼梯用时16 秒,第1 层到第8 层路程为7 段,则需用时16×7=112 秒。故选A。



82、袋子里装有红、蓝两色的小球各12个,先从袋子中拿出一个球,然后将它放回袋子中,混合后再从中拿出一个小球。那么两次抽中不同颜色的小球的几率有_____。
A: 20%B: 25%C: 50%D: 60%
参考答案: C 本题解释:【解析】因为两种颜色的小球数量相等,那么每次抽中其中一种颜色小球的概率均为50%。第一种情况:第一次抽中了红色小球,第二次抽中了蓝色小球,概率是50%×50%一25%;第二种情况:第一次抽中了蓝色小球,第二次抽中了红色小球,概率是50%×50%=25%。那么两次抽中不同颜色的小球的整体概率等于两种情况下的概率之和,即25%+25%=50%,答案为C。



83、小刚买了3支钢笔,1个笔记本,2瓶墨水花去35元钱,小强在同一家店买同样的5支钢笔,1个笔记本,3瓶墨水花去52元钱,则买1支钢笔,1个笔记本,1瓶墨水共需_____元。
A: 9B: 12C: 15D: 18
参考答案: D 本题解释:【答案】D。解析:解法一:设钢笔价格为X元,笔记本价格为Y元,墨水价格为Z元,可得方程组:3X+Y+2Z=35…①5X+Y+3Z=52…②×2-②:X+Y+Z=18元解法二:设钢笔价格为0,笔记本价格为X元,墨水价格为Y元,可得方程组:X+2Y=35…①X+3Y=52…②解得Y=17,X=1所以三者价格之和为0+1+17=18元。因此本题正确答案为D。



84、423×187-423×24-423×63的值是_____。
A: 41877B: 42300C: 42323D: 42703
参考答案: B 本题解释: B 【解析】原式可化为423×(187-24-63)。



85、一个数能被3、5、7整除,若用11去除这个数则余1,这个数最小是多少?_____
A: 105B: 210C: 265D: 375
参考答案: B 本题解释:B。这个数能被3、5、7整除,因此这个数是105的倍数.若这个数是105,105除以11的余数是6,不符合题意;若这个数是105×2=210,210除以11的余数是1,满足题意。因此这个数最小是210。



86、在一条公路两旁有四家工厂,工厂的职工人数如右图所示,现在要在这段路线上设立一个公共汽车站。问这个车站设在什么地方,可以使几家工厂的职工乘车方便?_____
A: 甲厂B: 乙厂C: 丙厂D: 丁厂
参考答案: C 本题解释:C【解析】四个工厂的职工人数总和的一半是:(1000+700+800+500)÷2=1500(人)。甲厂500人,丁厂1000人,它们都小于四厂总人数的一半。根据“小靠大”的原则,甲厂附近和丁厂附近都不是车站的最佳位置。甲厂与丁厂要分别向乙厂和丙厂靠,这样丙厂就相当于1000+700=1700(人),乙厂就相当于500+800=1300(人)。再由“小靠大”的原则,1700>1300,所以乙厂应向丙厂靠,即车站设在丙厂附近为最佳。故本题正确答案为C。



87、一只小鸟离开在树枝上的鸟巢,向北飞了20米,之后又向东飞了20米,然后又向上飞了20米。最后,它沿着到鸟巢的直线飞回了家。请问小鸟飞行的总长度与下列哪个最接近?_____
A: 34米B: 80米C: 94米D: 100米
参考答案: C 本题解释:C。



88、加油站有150吨汽油和102吨柴油,每天销售12吨汽油和7吨柴油。问多少天后,剩下的柴油是剩下的汽油的3倍?_____
A: 9B: 10C: 11D: 12
参考答案: D 本题解释:【答案】D。解析:假设x天,汽油还剩150-12x,柴油还剩102-7x,102-7x=3(150-12x),解得x=12,答案为D。



89、在一次国际美食大赛中,中、法、、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄国评委给出的平均分是92,那么中国评委和俄国评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2。又因为:A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。



90、李大夫去山里给一位病人出诊,他下午1点离开诊所,先走了一段平路,然后爬上了半山腰,给那里的病人看病。半小时后,他沿原路下山回到诊所,下午3点半回到诊所。已知他在平路步行的速度是每小时4千米,上山每小时3千米,下山每小时6千米。请问:李大夫出诊共走了多少路?_____
A: 5千米B: 8千米C: 10千米D: l6千米
参考答案: B 本题解释:



91、一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,停车场有红色夏利轿车多少辆?_____
A: 14B: 21C: 15D: 22
参考答案: B 本题解释:【解析】B。红色夏利=总数-红色非夏利-非红色非夏利-非红色夏利,红色非夏利=红色-红色夏利,非红色夏利=夏利-红色夏利,设则红色夏利=50-(35-红色夏利)-8-(28-红色夏利),得红色夏利=21。



92、小明和小强从400米环形跑道的同一点出发,背向而行。当他们第一次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向。小明每秒跑3米,小强每秒跑5米,则在两人第30次相遇时,小明共跑了多少米?
A: 11250B: 13550C: 10050D: 12220
参考答案: A 本题解释:【答案】A。



93、黑母鸡下一个蛋歇2天,白母鸡下一个蛋歇1天,两只鸡共下10个蛋最多需要多少天?_____
A: 10 B: 11 C: 12 D: 13
参考答案: B 本题解释:【解析】B。黑鸡每3天下一个蛋,白鸡每2天下一个蛋。10天时间黑鸡10÷3=3……1最多下4个蛋。白鸡最多下10÷2=5个蛋;11天时间黑鸡11÷3=3……2最多下4个蛋,白鸡11÷2=5……1最多下6个蛋。因此一共下10个蛋至少需要11天。



94、同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米。若单独打开A管,加满水需2小时40分钟。则B管每分钟进水多少立方米?_____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:由A、B管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可以灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180—160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故选B。



95、小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,那么小张的车速是小王的_____倍。
A: 1.5B: 2C: 2.5D: 3
参考答案: B 本题解释:【解析】B。行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y;第二次相遇 时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x÷y=2y÷(x-y),解得x=2y,故两人速度比为2:1。



96、有若干张卡片,其中一部分写着1.1,另一部分写着1.11,它们的和恰好是43.21。写有1.1和1.11的卡片各有多少张_____
A: 8张,31张B: 28张,11张C: 35张,11张D: 4l张,l张
参考答案: A 本题解释:【答案】A。解析:代入法,8×1.1+31×1.11=43.21,符合题意。



97、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱;如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了几角几分?_____
A: 27角6分B: 26角4分C: 25角5分D: 26角6分
参考答案: A 本题解释:【解析】A。如果每月用电24度,则应该交24×9=216分钱,即21.6角。答案中没有这个答案,就是说甲已经超过了这个规定数字。设他用了24+M度电,则交了24×9+M×20=216+20×M,甲比乙多交了96分,则216+20×M-96可以被9整除,即(20×M+120)÷9。M=3时,(20×M+120)÷9=2,即甲用了27度电,用了276分。



98、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。老师点睛:45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。



99、冷饮店规定一定数量的汽水空瓶可换原装汽水1瓶,旅游团110个旅客集中到冷饮店每人购买了1瓶汽水,他们每喝完一定数量的汽水就用空瓶去换1瓶原装汽水,这样他们一共喝了125瓶汽水,则冷饮店规定几个空瓶换1瓶原装汽水? _____
A: 8B: 9C: 10D: 11
参考答案: A 本题解释:A。110人多喝了125-110=15瓶汽水,则相当于110÷15=7……57个空瓶换一瓶汽水(不含瓶),故冷饮店规定7+1=8个空瓶换1瓶原装汽水。



100、一百张牌抽掉奇数牌,然后再抽掉剩下牌中位于奇数位的牌……如此最后剩下的一张是原来100张牌排序中的第几张呢?_____
A: 63 B: 64 C: 65 D: 66
参考答案: B 本题解释:B



Tags:村官 【数学运算】 行测
】【打印繁体】 【关闭】 【返回顶部
下一篇村官考试行测必看考点-【定义判断..

网站客服QQ: 960335752 - 14613519 - 791315772