设为首页    加入收藏

村官考试省级导航

A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 

村官行测必考点强化-【数学运算】技巧(二)
2016-06-16 22:28:11 来源:91考试网 作者:www.91exam.org 【
微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!

1、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86
参考答案: B 本题解释: B【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。



2、小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?_____
A: 144B: 136C: 132D: 128
参考答案: C 本题解释:C。相遇的时候小王比小张多走了,共用时24÷(48-40)=3小时,所以A地与B地之间的距离为48×3-12=132公里。



3、父亲和儿子的年龄和为50岁,三年前父亲的年龄是儿子的三倍,多少年后儿子年满18岁?_____
A: 2B: 4C: 6D: 8
参考答案: 本题解释:B【解析】设x年后儿子年满18岁,则儿子现在的年距为18-x,父亲为50-(18-x)=32+x,根据题意得:3(18-x-3)=32+x-3,解得x=4,故正确答案为B。



4、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?_____
A: 8元B: 10元C: 12元D: 15元
参考答案: C 本题解释:【解析】:盈亏总额为0.5×8+1.2×6=11.2(元),单价相差1.2-0.5=0.7(元),所以共可买乙种卡11.2÷0.7=16(张)。妈妈给了红红0.5×(16+8)=12(元)。故本题正确答案为C。



5、某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?_____
A: 5 B: 4  C: 3  D: 2
参考答案: D 本题解释:D。【解析】被N除余数是N-1,所以这个数字就是几个N的公倍数-1。10,9,8的公倍数为360n(n为自然数),因为100<S<1000,所以有两个数符合条件。



6、一袋白糖,第一次用去0.3斤,第二次用去余下的3/4,这时袋内还有白糖0.2斤,该袋糖原有多少斤?_____
A: 1.1B: 0.5C: 1.5D: 2
参考答案: A 本题解释: A 【解析】0.2÷(1-3/4)+0.3=1.1。



7、一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了_____棵果树。 B: 3C: 6D: 15
参考答案: B 本题解释:【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。



8、大小两个数的和是50.886,较大数的小数点向左移动一位就等于较小的数,求较大的数是_____。
A: 46.25B: 40.26C: 46.15D: 46.26
参考答案: D 本题解释:【答案】D。解析:观察选项发现,大数小数点后有两位,因为大小两个数的和是50.886,说明小数小数点后应该有三位,并且尾数为6,排除A、C选项。B选项,40.26小数点左移一位变为4.026,40.26+4.026=44.286≠50.886,排除B选项。D选项,46.26小数点左移一位变为4.626,46.26+4.626=50.886,因此,本题答案为D选项。



9、某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。_____
A: 51.2 B: 54.9 C: 61 D: 62.5
参考答案: C 本题解释:【解析】C.本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61.因此该产品最初的成本为61元。



10、一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?_____
A: 121B: 81C: 96D: 105
参考答案: D 本题解释:D[解一]由题意可得空心方阵再往里一层的总人数是:9+7=16(人),每边人数为:16÷4+1=5(人);所以3层空心方阵最外层每边人数为:5+2×3=11(人),总人数为:(11-3)×3×4=96(人);这队战士的总人数是:96+9=105(人)。[解二]相邻两层的人数之差为8人,最里层的人数为9+7+8=24人,次里层为24+8=32人,最外层为32+8=40人,所以总人数为24+32+40+9=105人。



11、某年10月份有四个星期四,五个星期三,这年的10月8日是星期_____。
A: 一B: 二C: 三D: 四
参考答案: A 本题解释:【答案】A。解析:根据题意,10月份的31号肯定是星期三,以此推断10月10号也是星期三,那么10月8日应该是星期一。



12、浓度为20%的盐水若干克,加入100克水后浓度变为15%,若要将盐水的浓度变为10%,需要再加水多少克?_____
A: 120B: 150C: 180D: 200
参考答案: D 本题解释:【答案】D。解析:设盐水原重x克,将盐水的浓度变为10%需再加水y克。根据题意,得解得x=300,y=200。故本题答案选D。



13、某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:A【解析】该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。



14、把若干个大小相同的水立方摆成如图形状!从上向下数,摆1层有1个立方体,摆2层共有4个立方体,摆3层共有10个立方体,问摆7层共有多少个立方体?_____
A: 60B: 64C: 80D: 84
参考答案: D 本题解释:【答案】D。解析:根据规律得出数列:1+3+6+10+15+21+28=84。



15、5人参加一次小测验,试卷上的10道题目均为4选1的单项选择题,若5个人全部答完所有题目,那么不同的答卷最多有_____种。
A: 410B: 510C: 40D: 200
参考答案: A 本题解释:【解析】从第1题开始最多可能出现4种不同的答案,然后在做第2题时也可能有4种不同的答案,直到第10题依然会出现4种答案。符合排列组合中乘法原理,因此不同的答卷一共会出现:4×4×4×…×4=410(种)。故答案为A。



16、甲、乙、丙三人买水果,甲买了3千克苹果和2千克梨,乙买了4千克苹果和3千克梨,丙买了3千克苹果和4千克梨。乙比甲多花7元,甲比丙少花5元。问甲、乙、丙共花了多少钱?_____。
A: 92.5元B: 112.5元C: 88.0元D: 67.5元
参考答案: D



17、反事实思维通常是在头脑中对已经发生了的事件进行否定,然后表现为原本可能发生但现实并未发生的心理活动。根据发生的方向可将反事实思维分为上行反事实思维和下行反事实思维。上行反事实思维,是对于过去已经发生了的事件,想象如果满足某种条件,就有可能出现比真实结果好的结果;下行反事实思维,是对过去已经发生了的事件,想象如果满足某种条件,就有可能出现比真实结果坏的结果。根据上述定义,下列各项中属于下行反事实思维的是_____。
A: 要是当时好好复习,这次考试就可以通过了B: 如果我发挥的稍微差一点,就与奖牌失之交臂了C: 如果祖父还活着,他一定不愿意看到今天这个局面D: 如果没有带这么多东西的话,我们现在就可以跑的快点了
参考答案: B 本题解释:【答案】B。解析:本题是定义判断,是一道双定义题,讲反事实思维,后又延生出上行反事实思维和下行反事实思维,而问题问的是哪个选项是属于下行反事实思维,反事实思维的意思是对过去发生的事情,要是满足某种条件就会发生比真实结果坏的事,A、C、D答案都是没有出现一个坏的结果,只有B答案出现了一个比预期坏的结果。所以B为正确答案。



18、三件运动衣上的号码分别是1、2、3,甲、乙、丙三人各穿一件。现有25个小球。首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是_____。
A: 1 B: 2 C: 3 D: 1或者2
参考答案: B 本题解释:B。【解析】首先发出了1+2+3=6个球,第二次又取出了25-6-2=17个球,穿2号和3号球衣的人第二次取走的球都是3的倍数,穿1号球衣第二次取走的球不多于3,所以只能是2个,即是乙。甲丙二人第二次共取走17-2=15个。若甲穿3号球衣,丙穿2号球衣,两人第二次只能取走3×3+1×4=13个,若甲穿2号球衣,丙穿3号球衣,两人第二次取走1×3+3×4=15个。甲穿的是2号球衣。



19、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。



20、有一串数:1,3,8,22,60,164,448 ,……其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:B。【解析】本题属于组合数列。奇数项:-1,4,14,29,();偶数项:1,8,20,37,两两做差:5,10,157,12,17两数列均为二级等差数列,于是得到所求项为20+29=49。所以选择B选项。



21、纸上写着2、4、6三个整数,改变其中任意一个,将它改写成为其他两数之和减1,这样继续下去,最后可以得到的是_____。
A: 595、228、368B: 44、95、50C: 103、109、211D: 159、321、163
参考答案: A 本题解释:A。



22、有a,b,c,d四条直线,依次在a线上写1,在b线上写2,在c线上写3,在d线上写4,然后在a线上写5,在b线,c线和d线上写数字6,7,8……按这样的周期循环下去问数2005在哪条线上?_____
A: a线B: b线C: C线D: d线
参考答案: A 本题解释:【答案解析】等于2005个数,4个一循环,所以2005/4=501余1,所以选A。



23、出租车在7公里以内收费10.6元(不足7公里按7公里收费),以后每走1公里收费1.8元,某乘客有一次乘出租车花了34元,他乘坐了多少公里?_____
A: 16B: 17C: 20D: 23
参考答案: C 本题解释:C解析:设他乘坐了x公里,根据题意列方程,得:10.6+(x-7)×1.8=34,解得:x=20,选C。



24、杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?_____
A: 3.90 B: 4.12 C: 4.36 D: 4.52
参考答案: D 本题解释:【答案】D。解析:三次的单价分别为5、5×80%=4、4×80%=3.2元。最外层有货物(7-1)×4=24个,中间层有24-8=16个,最内层有16-8=8个。所以总进价为3.2×24+4×16+5×8=180.8元,要保证20%的利润率,货物定价为180.8×(1+20%)÷(24+16+8)=4.52元。



25、甲、乙、丙三队在A、B两块地植树,A地要植树900棵,B地要植树1250棵,已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?_____
A: 5B: 7C: 9D: 11
参考答案: D 本题解释:D【解析】 植树共需(900+1250)÷(24+30+32)=25(天)。乙应在A地干(900-24×25)÷30=10(天),第11天转到B地。故本题正确答案为D。



26、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?_____
A: 星期一 B: 星期五 C: 星期二 D: 星期四
参考答案: C 本题解释: 【解析】C。取9,6,7的最小公倍数得126,即过126天,此三人才能再次相遇,而126天恰好是18个星期,因此下次他们见面还是在星期二。



27、



28、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。



29、一单位组织员工乘坐旅游车去泰山,要求每辆车上的员工人数相等。起初,每辆车上乘坐22人,结果有1人无法上车;如果开走一辆空车,那么所有的游客正好能平均乘到其余各辆旅游车上,已知每辆车上最多能乘坐32人。请问该单位共有多少员工去了泰山?_____
A: 269B: 352C: 478D: 529
参考答案: D 本题解释:D。开走一辆空车,则剩余22+1=23人,需要把23人平均分配到剩余的旅游车上。23的约数只有23和1,而每辆车最多能乘坐32人,排除将23人分配到1辆车上的情况(22+23>32),只能每辆车上分配1人,分配后每辆车有22+1=23人。进行条件转换,如果没有开走那辆车,那么每辆车分配23人,还少23人,加上已有条件“每辆车上乘坐22人,结果有1人无法上车”,就转化成了常规的盈亏问题。有车(1+23)÷(23-22)=24辆。有员工24×22+1=529人。



30、某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照x%税率征收,超过6000美元的部分按y%税率征收(X、Y为整数)。假设该国某居民月收入为6500美元,支付了l20美元所得税,则Y为多少?_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:A。由题意可得方程:3000×1%+3000×X%+500×Y%=120,化简得6X+Y=18,因为X、Y均为整数,代入各选项,只有A项中Y=6符合题意。



31、某学校入学考试,确定了录取分数线。在报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的学生其平均分比录取分数线低15分,所有考生的平均分是80分,推知录取分数线是_____。
A: 80B: 84C: 88D: 90
参考答案: C 本题解释:【答案】C。解析:不难看出,总共有多少人参加考试对本题的最终结果没有影响,仅是录取分数线的1/3对结果有影响,也即最后结果只与这个比例有关,而与总数无关。那么就可以直接看做录取了1个人,有2个人没录取,总人数为3人,则假定录取分数线为x分,于是得方程:(x﹢6)﹢(x-15)×2=80×3,解得x=88。故正确答案为C。



32、2003年7月1日是星期二,那么2005年7月1日是_____。
A: 星期三B: 星期四C: 星期五D: 星期六
参考答案: C 本题解释:【解析】C。2003年7月1日至2005年7月1日相差天数为731天,每星期为7天,731÷7=104还余下3天。所以在周二的基础上加三天,为周五。故选C。



33、有一列车从甲地到乙地,如果是每小时行100千米,上午11点到达,如果每小时行80千米是下午一点到达,则该车的出发时间是_____
A: 上午7点 B: 上午6点 C: 凌晨4点 D: 凌晨3点
参考答案: D 本题解释: 【解析】D。设出发时间是T,那么100×(11-T)=80(13-T),解得T=3,即凌晨3点。



34、用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,……,54321。其中,第206个数是_____
A: 313 B: 12345 C: 325 D: 371
参考答案: B 本题解释:B。由1、2、3、4、5组成的没有重复数字的一位数共有;二位数共有个;三位数共有个;四位数共有个;至此由1、2、3、4、5组成的没有重复数字的四位以内的数共有5+20+60+120=205个;那么第206个数是第一个由1、2、3、4、5组成的五位数,即最小的五位数12345。



35、某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6B: 8C: 10D: 12
参考答案: D 本题解释:列方程组。设学徒工、熟练工、技师分别有x,y,z名。则有:X+Y+Z=80,2X-96Y+7Z=48012X=6Y得到:X=15,y=5,Z=60,所以Z:Y=60:5=12。选D。



36、有个班的同学去划船,他们算了一下:如果增加一条船,正好可以坐8人,如果减少一条船,正好可以坐12人,问这个班共有多少同学?_____
A: 44B: 45C: 48D: 50
参考答案: C 本题解释:【答案】C。解析:设有船m只,则根据题意可得:8(m+1)=12(m-1),解得m=5。所以这个班共有同学8×(5+1)=48,故正确答案为C。



37、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86来
参考答案: B 本题解释:B 【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。



38、某市夏季高峰期对居民用电采用如下办法收取电费:用户月用电量在50度以内的部分,按0.4元/度收费;超过50度的部分,按0.8元/度收费。该市一户居民去年夏季高峰期有一个月的电费为32元,那么这个月该用户用电度数是_____。
A: 50度B: 55度C: 60度D: 65度
参考答案: D



39、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?_____
A: 40B: 41C: 44D: 46
参考答案: C 本题解释:【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44



40、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?_____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:【答案】C。解析:故正确答案为C。



41、一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之。既没有空调也没有高级音响的汽车有几辆?_____
A: 2;B: 8;C: 10;D: 15;
参考答案: A 本题解释:【答案解析】:选A,车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的-两样都有的=45-12=33,只有高级音响的=有高级音响的-两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2



42、设有9个硬币,其中有1分、5分、1角以及5角四种,且每种硬币至少有1个。若这9个硬币总值是1.77元,则5分硬币必须有几个?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:C。【解析】由题意知,每种硬币至少有1个,则知四种硬币各1个共0.66元,又由于硬币总值为1.77元,则还需增加1.11元,即5个硬币,从而需硬币1分1个,硬币5角2个,最后还需有1角。由于题意表明有9个硬币,应选2个5分硬币,因而共有3个5分硬币。



43、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。



44、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:_____
A: 2%B: 8%C: 40.5%D: 62%
参考答案: D 本题解释:【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。



45、甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?_____
A: 30B: 240C: 480D: 720
参考答案: D 本题解释:【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。



46、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有_____
A: 280种 B: 240种C: 180种D: 96种
参考答案: B 本题解释: 答案【B】由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。



47、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。



48、有水果糖、奶糖、巧克力三袋重量不同的糖果,水果糖与奶糖的重量比是6:5,若水果糖的2/3被吃掉,且被吃掉的水果糖与被吃掉的巧克力的重量之比是5:4,那么这两种糖剩下的部分重量相等。问原先水果糖、奶糖、巧克力的重量之比是多少?_____
A: 35:30:31B: 25:20:21C: 30:25:26D: 42:35:40
参考答案: C 本题解释:C。



49、一块试验田,以前这块地所种植的是普通水稻。现在将该试验田的1/3种上超级水稻,收割时发现该试验田水稻总产量是以前总产量的1.5倍。如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是_____。
A: 5∶2B: 4∶3C: 3∶1D: 2∶1
参考答案: A 本题解释:答案:A。设该试验田种普通水稻产量为x,种超级水稻产量为y,则有,解得y∶x=5∶2。



50、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 15 B: 14 C: 13 D: 12
参考答案: D 本题解释:D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。



51、一个长方形,它的周长是32米,长是宽的3倍。这个长方形的面积是多少平方米?_____
A: 64B: 56C: 52D: 48
参考答案: D 本题解释:D设宽为x则长为3x,则2(x+3x)=32,则x=4,故面积为48平方米。



52、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:【解析】:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)=6÷(4/5×3/4×2/3×1/2)=6÷1/5=30(厘米)故本题选C。



53、有甲乙丙三种盐水,浓度分别为5%、8%、9%,质量分别为60克、60克、47克,若用这三种盐水配置浓度为7%的盐水100克,则甲种盐水最多可用_____
A: 49克B: 39克C: 35克D: 50克
参考答案: A 本题解释:【答案】A。解析:



54、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?_____
A: 80B: 79C: 83D: 81
参考答案: B 本题解释:【解析】从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个。故应选择B。



55、现有一个无限容积的空杯子,先加入1克酒精,再加入2克水,再加入3克酒精,再加入4克水,……,如此下去,问最终杯子中酒精溶液浓度为多少?_____ B: 25%C: 33.3%D: 50%
参考答案: D 本题解释:【解析】D。如果把加一次酒精和水看成一个流程,则经过n个流程后,杯子里面有1+3+5+…+(2n-1)=1/2n(1+2n-1)=n2克酒精,而酒精溶液有1+2+…+2n=1/2×2n(1+2n)=n(1+2n)克。故此时酒精溶液浓度为n2/n(1+2n)=n/(2n+1),当n趋于无穷大时,溶液浓度趋于1/2=50%。思路点拨:极端法,当加入酒精或水的量极大时连续两次操作水与酒精的差距对整体的影响可以忽略不计,因此必然各占50%。



56、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄罗斯评委给出的平均分是92,那么中国评委和俄罗斯评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C【解析】设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。



57、某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有_____种。
A: 84B: 98C: 112D: 140
参考答案: D 本题解释: 答案【D】解析:按要求:甲、乙不能同时参加分成以下几类:A.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;B.乙参加,甲不参加,同(a)有56种;C.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。故共有56+56+28=140种。



58、一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?_____。
A: 10B: 19C: 26D: 27
参考答案: D 本题解释:D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。



59、李先生去10层楼的8层去办事,恰赶上电梯停电,他只能步行爬楼。他从第1层爬到第4层用了48秒,请问,以同样的速度爬到第8层需要多少秒? _____
A: 112B: 96C: 64D: 48
参考答案: A 本题解释:A【解析】假设每上一层楼的路程为一段楼梯,李先生从第1 层爬到第4 层,路程为3 段楼梯,用时48 秒,则每一段楼梯用时16 秒,第1 层到第8 层路程为7 段,则需用时16×7=112 秒。故选A。



60、8项不同的工程由三个工程队承包,每队至少承包2项,则不同的承包方案有多少种?_____
A: 5880种B: 2940种C: 1960种D: 490种
参考答案: B 本题解释:B【解析】8项不同的工程可以分为2、2、4和2、3、3两种情况,所以共有C28C26A33÷A22+C38C35A33÷A22=2940种。



61、两个人做一种游戏:轮流报数,报出的数不能超过8(也不能是0),把两个人报出的数连加起来,谁报数后,加起来的是88(或88以上的数),谁就获胜。让你先报数,你第一次报几就是一定会获胜?_____
A: 3B: 4C: 7D: 9
参考答案: C 本题解释: C【解析】 第一次报7一定会赢。以后另一个人报几,第一次报数者可以报这个数与9的差。这样一来,每一次报数都报出的数连加起来都是9的倍数加7;每一次另一个人报数以后,报出的数连加起来都不是9的倍数加7。而88除以9,余数是7,所以第一次报7者一定胜利。



62、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222 B: 1232 C: 1322 D: 1332
参考答案: D 本题解释:D。因为1、2、3之和可被3整除,故而1、2、3所组成的没有重复数字的三位数都能被3整除,而这些数字相加之和也必能被3整除,只有D项能被3整除,为正确答案。根据排列组合原理,可知该没有重复数字的三位数共有6个,1、2、3三个数在个、十、百位上各出现两次,即(1+2+3)×2=12,也就是说这一数字当为12+120+1200=1332。



63、把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问第2015张扑克牌是什么花色?_____
A: 黑桃 B: 红桃 C: 梅花 D: 方片
参考答案: C 本题解释:【答案】C。解析:一个完整的循环包括黑桃10张,红桃9张,方片7张,梅花5张,共31张,2015÷31=65,刚好可以被31整除,因此第2015张牌是梅花。正确答案为C。



64、某单位有78个人,站成一排,从左边向右数,小王是第50个,从右边向左数,小张是第48个,则小王和小张之间有多少个人? _____
A: 16B: 17C: 18D: 20
参考答案: C 本题解释:C。解析:小王到小张共有48-(78-50)=20人,所以,两人之间有18人。SA=(180-40×2)2=10000(平方厘米),SB=(180-40×2)×40÷2=2000(平方厘米),所求面积为SA+4SB=18000(平方厘米)。



65、3点19分时,时钟上的时针与分针所构成的税角为几度?_____
A: 14度B: 14.5度C: 15度D: 15.5度
参考答案: B 本题解释:【解析】B。14. 5度。一圈是360度。分针跑60分钟是一圈,360/60=每分钟6度 时针跑12小时是一圈,360/(12*60)=0.5度每分钟 3点19分时候分针跑了6*19=114。时针0.5*199=99.5。



66、某种考试已举行了24次,共出了试题426道,每次出的题数有25题,或者16题,或者20题,那么其中考25题的有多少次?_____
A: 4B: 2C: 6D: 9
参考答案: B 本题解释:B【解析】 假设24次考试,每次16题,则共考16×24=384(道),比实际考题数少426-384=42(道),也就是每次考25题与每次考20题,共多考的题数之和为42道。而考25题每次多考25-16=9(道),考20题每次多考20-16=4(道)。这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据数的奇偶性可知,B无论是奇数还是偶数,4B总是偶数,那么9A也是偶数,因此A必定是偶数,且A不是2就是4。如果A=4,则9×4+4×B=42,B=1.5不合题意,应删去,所以考25道试题的次数是2次。



67、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?_____
A: 120B: 144C: 177D: 192
参考答案: A 本题解释:【解析】A。设参加人数为N,列等式:63+89+47-46-2*24=N-15,N=120。



68、小赵、小钱、小孙一起打羽毛球,每局两人比赛,另一人休息。三人约定每一局的输方下一局休息。结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局。则参加第9局比赛的是_____。
A: 小钱和小孙B: 小赵和小钱C: 小钱和小孙D: 以上皆有可能
参考答案: B 本题解释:B。本题关键在于三个人打羽毛球,一人休息的时候必然是另外两人比赛的时候。因此条件“小赵休息了2局”,说明小钱和小孙对战了2局,则两人其余的比赛都是和小赵进行的,于是总的比赛局数为8+5-2=11(局)。三人比赛中,任何一个人不可能连续休息两场,也即每个人的休息场次只能是间隔的,而11局比赛中小孙打了5局,休息了6局,那么他只能是这11局比赛中的第2、4、6、8、10局中上场。因此第9局比赛中小孙没有上场,也即参加比赛的是小赵和小钱。故选B。



69、红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到队头,然后立即返回队尾,共用10分钟。求队伍的长度。_____
A: 630米B: 750米C: 900米D: 1500米
参考答案: A 本题解释:【答案】A。解析:设王老师从队尾走到队头用x分钟,可列方程(150-60)×x=(150+60)×(10-x),解得x=7分钟,则队伍的长度为(150-60)×7=630米,选择A。



70、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。由图可知;只参加一个项目的有l+2=3=6名。



71、有一个正方形花池,周围用边长25cm的方砖铺了一条宽1.5米的小路,共用1776块。花池的面积是多少平方米?_____
A: 111   B: 289   C: 400   D: 10404
参考答案: B 本题解释:【答案】B[解析]水池周围的面积是0.25×0.25×1776=111, 设外围正方形边长X,花池小正方形边长Y,则有X2-Y2=111, 20的平方是400,17的平方是289,400-289刚好是111(熟记20以内平方的好处…),所以花池面积就是289,选B。



72、配制黑火药用的原料是火硝、硫磺和木炭。火硝的质量是硫磺和木炭的3倍,硫磺只占原料总量的1/10,要配制这种黑火药320千克,需要木炭多少千克_____
A: 48B: 60C: 64D: 96
参考答案: A 本题解释:A【解析】火硝的质量是硫磺和木炭的3倍,说明火硝占原料总量的3/(3+1)=3/4,又因为硫磺只占原料总量的1/10,所以木炭占原料总量的1-3/4-1/10=3/20。因此配置这种黑火药320千克,需要木炭320×(3/20)=48千克。



73、某校下午2点整派车去某厂接劳模作报告,往返须1小时。该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点40分到达。问汽车的速度是劳模的步行速度的几倍? _____
A: 4B: 6C: 7D: 8
参考答案: D 本题解释:D。【解析】本题要画图辅助,假设全程距离为1,汽车来回的时间为1小时,所以,其速度为1,汽车运行时间为2/3小时,所以汽车跑的路程为2/3,人走的距离为剩下1/3路程的一半,即1/6,步行的时间为1小时20分,所以步行的速度是1/6÷(1+1/3)=1/8,所以汽车的速度是劳模的8倍。选D。



74、筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10B: 10.12C: 11.16D: 13.50
参考答案: C 本题解释:C解析:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是,720×15.5=11160(米)。故本题选C。



75、从法律规则形式特征上看,可分为规范性规则和标准性规则。规范性规则指规则的内容明确、肯定和具体,且可直接适用的规则;标准性规则则指法律规则的部分内容或全部内容(事实状态、权利、义务、后果等)具有一定伸缩性,须经解释方可使用且可适当裁量的规则。根据上述定义,下列属于规范性规则的是_____。
A: “早六点至晚六点间本街道禁止通车”B: “每一选民在一次选举中只有一个投票权”C: “民事活动应当尊重社会公德,不得损害社会公共利益”D: “行政机关作出责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚决定之前,应当告知当事人有要求举行听证的权利”
参考答案: B 本题解释:【答案】B。解析:由于题干只针对规范性规则提问,因此只需分析这一定义即可。第一步:抓住定义中的关键词定义中强调”法律规则“、”内容明确、肯定和具体“、”直接适用“等。第二步:逐一判断选项A项不是法律规则;C项中的”应当尊重“、D项中的”较大金额“等规定具有伸缩性,不能直接适用,均不符合定义。B项规定明确具体,可直接适用,符合定义。故正确答案为B。



76、旅行社对120人的调查显示,喜欢爬山的与不喜欢爬山的人数比为5:3;喜欢游泳的与不喜欢游泳的人数比为7:5;两种活动都喜欢的有43人。对这两种活动都不喜欢的人数是_____。
A: 18B: 27C: 28D: 32
参考答案: A 本题解释:【答案】A。解析:依题意喜欢爬山的有75人,喜欢游泳的有70人,由容斥原理公式,两种活动都不喜欢的有120-(75+70-43)=18人。



77、某市财政局下设若干处室,在局机关中不是宣传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247 C: 198 D: 212
参考答案: D 本题解释: 【解析】由题意有:人。所以选D。



78、某招聘会在入场前若干分钟就开始排队,每分钟来的求职人数一样多,从开始入场到等候入场的队伍消失,同时开4个入口需30分钟,同时开5个入口需20分钟。如果同时打开6个入口,需多少分钟?_____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:牛吃草问题。假定原有人数n人、每分钟新增人数x人,则可得:n=(4一x)×30,n=(5一x)×20,解得x=2,n=60。将6个入口代入,可得所需时间为60÷(6-2)=15(分钟)。故选D。



79、一群人坐车旅游,每辆车坐22人,剩5人没有座位,每辆坐26人,空出5个座位, 问每辆车坐25人,空出多少座位? _____
A: 20B: 15C: 10D: 5
参考答案: C 本题解释: C。一盈一亏型,车的数量为(15+5)÷ (26-22)=5,则共有5×22+5=115人。则坐25人时,115 ÷ 25=4……15,即需要5辆车,空出25-15=10个座位。



80、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少?_____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。



81、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?_____
A: 20,11,50 B: 19,7,55 C: 12,9,60 D: 11,15,55
参考答案: B 本题解释:B。【解析】三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1.甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2.甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3.最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元。



82、市民广场中有两块草坪,其中一块草坪是正方形,面积为400平方米,另一块草坪是圆形,其直径比正方形边长长10%,圆形草坪的面积是多少平方米?_____
A: 410B: 400C: 390D: 380
参考答案: D 本题解释: 【解析】正方形的边长是20米,那么圆的半径是米,那么圆形草坪的面积是,故选D。



83、某企业有甲、乙、丙三个部门,已知三个部门员工的人数比为4:5:6,平均年龄是34岁,甲部门员工的平均年龄是30岁,丙部门员工的平均年龄是20岁。问乙部门员工的平均年龄是多少岁?_____
A: 45B: 48C: 51D: 54
参考答案: D 本题解释:D.【解析】这是一道加权平均数问题。设乙部门员工的平均年龄为x岁,则有<p>具体计算时,x=54。因此,本题的正确答案为D选项。



84、小木、小林、小森三人去看电影,如果用小木带的钱去买三张电影票,还差0.55元;如果用小林带的钱去买三张电影票,还差0.69元;如果用三人带去的钱买三张电影票,就多0.30元,已知小森带了0.37元,那么买一张电影票要用多少元?_____
A: 1.06B: 0.67C: 0.52D: 0.39
参考答案: D 本题解释:D【解析】设每张电影票x元,则小木的钱数为3x-0.55元,小林的钱数为3x-0.69元,小森的钱数为0.37元。三人的钱数和为3x+0.30元,即可得出:3x-0.55+3x-0.69+0.37=3x+0.30,求得x=0.39(元)。



85、有一个上世纪80年代出生的人,如果他能活到80岁,那么有一年他的年龄的平方数正好等于那一年的年份。问此人生于哪一年_____
A: 1980年 B: 1983年 C: 1986年 D: 1989年
参考答案: A 本题解释:【解析】A。1980~2069中只有一个平方数2025(即),由“有一年他的年龄的平方数正好等于那一年的年份”可知满足条件的那一年是2025年,此时他的年龄为45岁,因此此人生于2025-45=1980(年),符合“上世纪80年代出生”这个要求。



86、在一个口袋中有l0个黑球、6个白球、4个红球.至少从中取出多少个球才能保证其中有白球? _____
A: 14B: 15C: 17D: 18
参考答案: B 本题解释:【答案】B.解析:抽屉原理,最坏的情况是10个黑球和4个白球都拿出来了,最后第15次拿到的肯定是白球。



87、有3个企业共订阅300份《经济周刊》杂志,每个企业至少订99份,最多订101份,问一共有多少种不同的订法? _____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:B。【解析】份数的选择有99,100,101或100,100,100,则第一种选择有A33=6种订法,6+1=7



88、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训? _____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:【解析】D。本题可直接看出答案,乙教室一次45人,共有1290人,所以乙次数一定为偶数,又因为一共27次,所以甲一定为奇数,直接选15。



89、某单位有员工540人,如果男员工增加30人就是女员工人数的2倍,那么原来男员工比女员工多几人?_____
A: 13B: 31C: 160D: 27
参考答案: C 本题解释:【答案】C。解析:男员工增加30人后,总员工为570人,男员工是女员工的2倍,得女员工为570÷3=190,则原有男员工540-190=350,男员工比女员工多350-190=160人。故正确答案为C。老师点睛:男员工增加30人后,总员工为570人,男员工是女员工的2倍,由于540、30均为偶数,则原有男、女员工的数目也为偶数,男员工比女员工多的人数也是偶数。只有选项C符合条件,故正确答案为C。



90、甲从A地,乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A,B两地相距多少千米? (D)
A: 10B: 12C: 18D: 15
参考答案: D 本题解释:答案:D 解析:设A,B两地相距为y千米,6/(y-6)=(y-6+3)/(6+y-3),解得y=15。



91、电影票10元一张,降价后观众增加一倍,收入增加1/5,则一张票降价多少元?_____
A: 8B: 6C: 4D: 2
参考答案: C 本题解释:【答案】C。设原来观众为1,设降价后为X元,则有(10×1):2X=5:6,得出X=6,则降价4元,选C。



92、田忌与齐威王赛马并最终获胜被传为佳话,假设齐威王以上等马、中等马和下等马的固定程序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是_____。
A: 2/3B: 1/3C: 1/6D: 1/9
参考答案: C 本题解释:【答案】C。解析:故正确答案为C。



93、某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是_____
A: 140B: 569C: 712D: 998
参考答案: D 本题解释:D。选项中只有998加上3能整除11和13,加上5能整除17。



94、某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长_____米。
A: 360B: 400C: 450D: 500
参考答案: B 本题解释:B【解析】8千米/小时=(400/3)米/分,12千米/小时=200米/分,设队伍长χ米,则χ÷(200-400/3)+χ÷(200+400/3)=7.2,解得χ=400。



95、在一条公路旁有4个工厂,每个工厂的人数如图所示,且每两厂之间距离相等。现在要在公路旁设一个车站,使4个工厂的所有人员步行到车站总路程最少,这个车站应设在几号工厂门口?_____
A: 1号B: 2号C: 3号D: 4号
参考答案: C 本题解释:C【解析】 一般情况车站设在几个工厂的中间,即设在2号工厂或3号工厂门口。由于各厂人数不同,还是应通过计算再决定车站在哪一个工厂门口合适。如果设车站建在2号工厂门口,且设每两个工厂之间距离为1千米,那么4个工厂所有人员步行总路程为:1×100+1×80+2×215=100+80+430=610(千米)如果车站设在3号工厂门口,每两个工厂之间的距离为1千米,那么4个工厂所有人员步行总路程为:1×100×2+1×120+1×215=200+120+215=535(千米)显然,车站设在3号厂门口,才能使4个工厂所有人员步行到车站总路程最少。故本题选C。



96、某单位有185人。在某次乒乓球比赛中。有12%的男员工和12.5%的女员工参加这次比赛。则该单位男员工有多少人?_____
A: 25B: 65C: 105D: 125
参考答案: A 本题解释:A。



97、某月刊杂志,定价2.5元,劳资处一些人订全年,其余人订半年,共需510元,如果订全年的改订半年,订半年的改订全年,共需300元,劳资处共多少人?_____
A: 20B: 19C: 18 D: 17
参考答案: C 本题解释: 【解析】本题用解方程的方法也可以解答,但是速度较慢。由题意可知,如果劳资处所有人都订一年半的话,总计810元;而单人订一年半的月刊需元;所以共有人。故选C。



98、某超市购进一批商品,按照能获得50%的利润的定价,结果只销售了70%,为尽快将余下的商品销售出去,超市决定打折出售,这样所获得的全部利润是原来能获得利润的82%,问余下的商品几折出售?_____
A: 6.5折B: 7折 C: 7.5折D: 8折
参考答案: D 本题解释:D。设成本100,定价150,则原来一件利润是50,再设折扣X,共有Y件商品,所以50Y*0.7+(150X-100)0.3Y=50Y*0.82,整理得X=0.8,选D。



99、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。



100、六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案】B。解析:开始时是1,1,1,1,1,1,第二次变为0,0,3,1,1,1,第三次变为2,0,2,0,1,1,第三次变为4,0,1,0,0,1,第四次变为6,0,0,0,0,0。



Tags:村官 【数学运算】 行测
】【打印繁体】 【关闭】 【返回顶部
下一篇村官考试行政能力测试-逻辑判断技..

网站客服QQ: 960335752 - 14613519 - 791315772