设为首页    加入收藏

村官考试省级导航

A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 

村官行测必考点强化-数学运算题(二)
2016-06-23 07:35:31 来源:91考试网 作者:www.91exam.org 【
微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!

1、三位数的自然数P满足:除以7余2,除以6余2,余以5也余2,则符合条件的自然数P有_____。
A: 2个B: 3个C: 4个D: 5个
参考答案: C 本题解释:正确答案是C考点余数与同余问题解析解析1:由题可知,该数减去2应当同时为5、6、7的倍数,5、6、7的最小公倍数为210,故满足条件的三位数有210+2=212,210×2+2=422,210×3+2=632,210×4+2=842,共四个数字。故正确答案为C。解析2:根据口诀:余同取余,和同加和,差同减差,最小公倍数做周期。知道满足余同,该自然数P满足P=210n+2,又P是三位数,则100≤210n+2≤999,解得:1≤n≤4。满足条件的n有4个。故正确答案为C。标签最小公倍数



2、8.01×1.24+8.02×1.23+8.03×1.22的整数部分是多少?_____
A: 24B: 27C: 29D: 33
参考答案: C 本题解释:答案:C【解析】由8.03×1.22<8.02×1.23<8.01×1.24得:8.01×1.24+8.02×1.23+8.03×1.22<8.01×1.24×3<8×1.25×3=30。8.01×1.24+8.02×1.23+8.03×1.22>8×(1.24+1.23+1.22)=8×3.69=29.52。所以,所求的整数部分为29。故选C。



3、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲先做3小时后,再由乙接着做,还需要多少小时完成? _____
A: 16B: 18C: 21D: 24
参考答案: C 本题解释:C【解析】设甲、乙两人每小时的工作量x、y,可列方程6x+12y=18x+6y=1 解得x=110y=130,甲先做了110×3,工作还剩1-310=710,故乙还需要710÷130=21 小时。故选C。



4、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训? _____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:【解析】D。本题可直接看出答案,乙教室一次45人,共有1290人,所以乙次数一定为偶数,又因为一共27次,所以甲一定为奇数,直接选15。



5、袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球。现从袋中任取1球,并且每只球被取到的可能性相同。若已知取到的球是白球,问它是木球的概率是多少?_____
A: 4/7B: 7/25C: 2/25D: 2/5
参考答案: A 本题解释:参考答案:A题目详解:取到白球中的木球的概率:;取到白球的概率为:;根据条件概率公式:;所以,选A。考查点:数量关系>数学运算>概率问题>条件概率



6、已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5。已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?_____
A: 780B: 720C: 480D: 240
参考答案: C 本题解释:参考答案:C题目详解:根据题意,把小强步行速度的看作单位“1”,则有:小明是小强的,小刚是小强的,所以小强10分钟行米。小明比小强少行,所以,小明在20分钟里比小强少走米。所以,选C。考查点:数量关系>数学运算>和差倍比问题>比例问题



7、把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有_____种不同的分法。
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:正确答案是B考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。



8、小陈家住在5楼,他每天上下楼各一次,共需走120级楼梯。后来小陈家搬到同一栋楼的8楼,如果每层楼的楼梯级数相同,则他搬家后每天上下楼一次共需走楼梯_____级。
A: 168B: 192C: 210D: 240
参考答案: C 本题解释:正确答案是C考点计数模型问题解析住在5楼,需要走5-1=4层楼梯,住在8楼,修要走8-1=7层楼梯,每层楼梯级数不变,则可得120÷4×7=210级。故正确答案为C。



9、符号消费是指在消费过程中,消费者除消费产品本身以外,同时也消费这些产品所象征和代表的意义、心情、美感、档次、情调和气氛,即对这些符号所代表的“意义”或“内涵”的消费。根据上述定义,下列各项中体现了符号消费的是_____。
A: 大张和小伟结伴去背包旅行,小伟买了个专业登山包,大张随便背了个包就去了,结果被小伟嘲笑了一番B: 面点师小金每到一个地方,都会去当地知名的蛋糕店点上几份甜品,并且花上几个小时仔细品尝C: 某甜品店最近生意火爆,顾客都指明要该店新推出的一款特色饮品D: 老李退休后非常注重养生,买了一大堆的保健品
参考答案: A 本题解释:A。定义的关键词是“意义”和“内涵”。A项,小伟和大张的包都能够满足旅行的需要,但小伟嘲笑大张的包,说明他购买专业登山包,主要是消费它所代表的时尚、档次等“内涵”,并不是在于包本身,因此符合定义。B项,小金作为面点师,去仔细品尝知名蛋糕店的甜品,是为了改进、提高自己的手艺,而不单纯是为了消费,因而也就更谈不上是符号消费。C项,顾客购买新推出的特色产品,针对的是产品本身。D项,老李购买保健品是出于养生的需求,他消费的也是产品本身。



10、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分。那么这个队胜了几场?_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:参考答案:C题目详解:设这个队胜了场,平了场,解得。所以,选C。考查点:数量关系>数学运算>特殊情境问题>鸡兔同笼问题>鸡兔同笼变形问题



11、计算1/4+3/8+7/16+15/32+31/64+63/128+127/256+255/512+511/1024=?_____
A: 3×(513/1024)B: 3×(1023/1024)C: 4×(1/1024)D: 4×(511/1024)
参考答案: C 本题解释:【答案】C 解析∶原式=1/2-1/4+1/2-1-8+……+1/2-1/1024=4+1/1024=4×(1/1024)。



12、在浓度为 的酒精中加入10千克水,浓度变为 ,再加入L千克纯酒精,浓度变为 ,则L为多少千克?_____
A: 8B: 11.7C: 14.6D: 16.4
参考答案: B 本题解释:参考答案:B题目详解:应用十字交叉法:根据题意;第一次混合相当于浓度为的溶液混合:所以75%的酒精与水的比例为;水10千克,的酒精8.75千克。混合后共18.75千克。第二次混合,相当于浓度为的溶液混合:所以的酒精与纯酒精的比例为,即18.75:千克;所以,选B。考查点:数量关系>数学运算>浓度问题>不同溶液混合



13、某超市购进一批商品,按照能获得50%的利润的定价,结果只销售了70%,为尽快将余下的商品销售出去,超市决定打折出售,这样所获得的全部利润是原来能获得利润的82%,问余下的商品几折出售?_____
A: 6.5折B: 7折 C: 7.5折D: 8折
参考答案: D 本题解释:D。设成本100,定价150,则原来一件利润是50,再设折扣X,共有Y件商品,所以50Y*0.7+(150X-100)0.3Y=50Y*0.82,整理得X=0.8,选D。



14、爷爷年龄65岁,三个孙子的年龄是15、13、9岁,问多少年后三个孙子的年龄和与爷爷的年龄相等?_____
A: 12B: 13C: 14D: 15
参考答案: C 本题解释:【答案】C。解析:设x年后三个孙子的年龄和与爷爷的年龄相等,现在三人的年龄和与爷爷年龄相差为65-15-13-9=28,那么列式3x=x+28,解得x=14。



15、老张和老王两个人在周长为400米的圆形池塘边散步。老张每分钟走9米,老王每分钟走16米。现在两个人从同一点反方向行走,那么出发后多少分钟他们第二次相遇?_____
A: 16B: 32C: 25D: 20
参考答案: B 本题解释:正确答案是B考点行程问题解析两个人第一次相遇时,两人一共走了一圈,需要400÷(9+16)=16(分钟),故两次相遇共需16×2=32(分钟),故正确答案为B选项。注:环形周长=(大速度+小速度)×时间标签两次相遇模型公式应用



16、某市场运来苹果、香蕉、柚子和梨四种水果。其中苹果和柚子共30吨,香蕉、柚子和梨共50吨,柚子占水果总数的1/4。问一共运来水果多少吨?_____
A: 36吨B: 64吨C: 80吨D: 170吨
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析



17、小王去一个离家12千米的地方,他每小时步行3千米,每步行50分钟他要休息10分钟,8点整出发,他几点可以到目的地?_____
A: 12点B: 12点30分C: 12点35分D: 12点40分
参考答案: D 本题解释:D。小王不休息的话他走12千米所需的时间是12÷3=4(小时),4小时包含4个50分钟余40分钟,因此小王总共休息了4个10分钟,那么小王花费的总时间是4小时40分钟,也就是小王到达目的地的时间是12点40分。故选D。名师点评:本题很多考生会有如下解法:根据题意每小时中有50分钟行走、10分钟休息,则每个小时小王实际行进2.5千米,因此要步行12千米,用时为12÷2.5=4.8(小时),合4小时48分钟。这是一种典型的错误解法,因为这样相当于取的是等价速度,在整数小时部分不会出现错误,但在非整数部分也即在最后一段,并不是按等价速度来行进的,而是直接行进40分钟到达目的地,而无休息时间。



18、甲从A地到B地需要30分钟,乙从B地到A地需要45分钟,甲乙两人同时从A、B两地相向而行,中间甲休息了20分钟,乙也休息了一段时间,最后两人在出发40分钟后相遇。问乙休息了多长时间?_____
A: 25B: 20C: 15D: 10
参考答案: A 本题解释:正确答案是A考点行程问题解析甲和乙走完全程分别要30、45分钟。甲在相遇时走了20分钟,走了全程的2/3,乙走了全程的1/3,应该用45×1/3=15分钟。因此乙休息了40-15=25分钟。因此正确答案为A。



19、自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?_____
A: 不存在B: 1个C: 2个D: 3个
参考答案: C 本题解释:正确答案是C解析由"除以10的余数为9,P除以9的余数为8,P除以8的余数为7",满足差同减差,对应口诀可知其符合表达式为360n-1,由于100<P<1000,则100<360n-1<1000,所以n能取1、2,则满足条件的P有两个,即359和719,故正确答案为C。注释:同余问题需要掌握如下口诀:余同取余,和同加和,差同加差,最小公倍数做周期。口诀解释:余同取余,例如"一个数除以7余1,除以6余1,除以5余1",可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如"一个数除以7余1,除以6余2,除以5余3",可见除数与余的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如"一个数除以7余3,除以6余2,除以5余1",可见除数与余的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。余数与同余问题标签同余问题



20、某单位购买了10台新电脑,计划分配给甲、乙、丙3个部门使用。已知每个部门都需要新电脑,且每个部门最多得到5台,那么电脑分配方法共有_____种。
A: 9B: 12C: 18D: 27
参考答案: C 本题解释:正确答案是C考点排列组合问题解析标签分类分步



21、随着通讯市场竞争日益激烈,某通讯公司的手机市话费按原标准每分钟降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,那么,原收费标准为每分钟_____。
A: (5/4)b-a元B: (5/4)b+a元C: (3/4)b+a元D: (4/3)b+a元
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设原收费标准为x元每分钟,两次降低价格后的价格为b元,可列方程(x-a)×(1-25%)=b,解得x=(4/3)b+a,故正确答案为D。



22、有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?_____
A: 1月9日B: 1月10日C: 1月11日D: 1月8日
参考答案: D 本题解释:参考答案题目详解:根据题意,可知:甲单独做了76天完工,因为,则实际工作:天,乙单独做了89天完工,因为,则实际工作:天,则甲乙的工作效率分别为;在一个7天周期内合作共完成,也就是需要5个七天后还剩(此处七天工作量为1),也就是差的量刚好一个七天的周期,而甲每天完成的量为,所以第六个七天工作了6天。所以共用了,所以,将在1999年1月8日完工。因此,选D考查点:数量关系>数学运算>工程问题>合作完工问题



23、一厂家生产销售某新型节能产品。产品生产成本是168元,销售定价为238元。一位买家向该厂家预订了120件产品,并提出产品销售价每降低2元,就多订购8件。则该厂家在这笔交易中能获得的最大利润是_____元。
A: 17920B: 13920C: 10000D: 8400
参考答案: C 本题解释:正确答案是C考点函数最值问题解析假设下降m元,等到最大利润,则有(238-168-m)×(120+m÷2×8)=(70-m)×(120+4m)=(70-m)×(m+30)×4,当m+30=70-m时,求得最大值,此时m=20,则最大利润为50×50×4=10000。故正确答案为C。



24、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:_____
A: 60;B: 65;C: 70;D: 75;
参考答案: A 本题解释:【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种



25、小王登山,上山的速度是4km,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为_____km/h。
A: 5B: 4.8C: 4.6D: 4.4
参考答案: B 本题解释:正确答案是B考点平均数问题解析根据等距离平均速度模型公式可得平均速度为2&times;6&times;4&divide;(4+6)=4.8千米/小时。故正确答案为B。注:距离为无关项。



26、一条环形赛道前半段为上坡,后半段为下坡,上坡和下坡的长度相等。两辆车同时从赛道起点出发同向行驶,其中A车上下坡时速相等,而8车上坡时速比A车慢20%,下坡时速比A车快20%。则在A车跑到第几圈时,两车再次齐头并进?_____
A: 22B: 23C: 24D: 25
参考答案: D 本题解释:假定A车速度为v,则B车上坡速度为0.8v,下坡速度为1.2v。由等距离平均速度公式可知B车完成一圈的平均速度为0.96v。则A车与B车跑一圈的平均速度之比为25:24,因此A车完成25圈时,两车同时回到起点。故选D。



27、有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数? _____
A: 12B: 15C: 14D: 13
参考答案: C 本题解释:答案:C 解析:将这20个数字分别为如下3组:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13,考虑最差的情况,取出14个数字至少有2个数字在同一组,则它们之差为13。



28、如果某商店 以每打1.8元的价格购进6打小工艺品(每打12件).之后又以每件0.2元卖出.这些小商品全部卖完后商店可得多少利润?_____
A: 32元 B: 3.6元 C: 2.4元 D: 2.84元
参考答案: B 本题解释:B【解析】0.2×12×6-1.8×6=3.6,一打=12个。



29、一名事业单位职工1978年参加工作时月工资总额是49.5元,2012年其年工资是1978年的112倍且每月还多11元,改革开放以来这名职工月工资增加了多少元?_____
A: 5050B: 5505.5C: 5545D: 5555.5
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析改革开放以来该职工月工资增长量是1978年工资的111倍还多11元,也即:49.5×111+11=49.5×111+11=5505.5元,故正确答案为B。



30、77个连续自然数的和是7546,则其中第45个自然数是_____。
A: 91B: 100C: 104D: 105
参考答案: C 本题解释:77个自然数的和是7546,故平均数7546÷77=98为中位数,也即第39个数,因此第45个数为104。故选C。



31、⊙b=4a+3b,若5⊙(6⊙x)=110,则x的值为_____。
A: 5B: 4C: 3D: 2
参考答案: D 本题解释:正确答案是D考点计算问题解析按照新定义运算展开,得4×5+3×(4×6+3x)=110,解得x=2。



32、某工程甲单独做50天可以完成,乙单独做75天可以完成;现在两人合作,但途中乙因事离开了几天,最后一共花了40天把这项工程做完,则乙中途离开了_____天。
A: 15B: 16C: 22D: 25
参考答案: D 本题解释:参考答案题目详解:根据题意,设整个工程总量为“1”,则有:乙中途离开,但是甲从始至终工作了40天,那么甲的工作量为:;该工程中乙需要做的工作量为:;乙需要用了天完成;故乙离开了天。所以,选D考查点:数量关系>数学运算>工程问题>合作完工问题



33、计算:(1+12)×(1-12)×(1+13)×(1-13)×…×(1+199)×(1-199)的值为_____。
A: 1C: 50/101D: 50/99
参考答案: D 本题解释:D[解析]原式=(1+1/2)×(1+1/3)×…×(1+1/99)×(1-1/2)×(1-1/3)×…×(1-1/99)=(3/2×4/3×5/4×…×99/98×100/99)×(1/2×2/3×3/4×…×97/98×98/99)=100/2×1/99=50/99因此,本题正确答案为D。



34、百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?_____
A: 65B: 70C: 75D: 80
参考答案: C 本题解释:C设原价为x元,则80%x+25=x,x=75元。



35、_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点计数模型问题解析故正确答案为C。标签公式应用



36、有一种数叫做完全数,它恰巧等于除去它本身以外的一切因数的和,如6是因数1+2+3的和。请问在20到30之间,这样的完全数是哪个?_____
A: 24B: 26C: 27D: 28
参考答案: D 本题解释:参考答案题目详解:根据题意,采用代入法对各项分析,只有28=1+2+4+7+14,其他选项都不符合题意。所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题



37、真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是_____。
A: 6B: 5C: 7D: 8
参考答案: A 本题解释:【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。



38、调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,47人看过乙片,63人看过丙片,24人三部都看过,20人一部也没有看过,问只有看过其中两部的有多少人?_____
A: 69B: 65C: 57D: 46
参考答案: D 本题解释:参考答案题目详解:考查文氏图运算。甲乙丙中至少看过一部电影的有:。假设只看过一部的有人,只看过两部的有人,则有:1;1。由①②可得:,则只看过两部的有46人,所以,选D。考查点:数量关系>数学运算>容斥原理问题>三个集合容斥关系



39、_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B解析考点计算问题



40、某校学生列队以8千米/小时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队的老师传达一个命令,然后立即返回队尾,这位学生的速度为12千米/小时,从队伍出发赶到排头又回到队尾共用了7.2分钟,那么学生的队伍长_____米。
A: 360B: 400C: 450D: 500
参考答案: B 本题解释:B【解析】8千米/小时=(400/3)米/分,12千米/小时=200米/分,设队伍长χ米,则χ÷(200-400/3)+χ÷(200+400/3)=7.2,解得χ=400。



41、1000千克青菜,早晨测得它的含水率为 ,这些菜到了下午测得含水率为 ,那么这些菜的重量减少了_____千克。
A: 200B: 300C: 400D: 500
参考答案: C 本题解释:参考答案:C题目详解:青菜中除了水之外的其他成分质量不会变化:用,求出除去水的重量为30千克;用对应量去除以对应量的百分比:即为千克;千克;所以少了400千克;所以,选C。考查点:数量关系>数学运算>浓度问题>溶剂变化



42、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86来
参考答案: B 本题解释:B 【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。



43、解放军某部有600人,他们排成四路纵队,每相邻两排之间前后相距1米。队伍每分钟行75米,现在要通过一座长676米的桥,从排头上桥到排尾离桥共需多少分钟?_____
A: 10B: 11C: 12D: 13
参考答案: B 本题解释:参考答案:B题目详解:四路纵队,就是600人排成4路(列):即每列150人;每相邻两排之间前后相距1米:150人有149个间隔,则队列长为149米;依题意:队伍长为米,通过桥需分钟。所以,选B。考查点:数量关系>数学运算>行程问题>初等行程问题



44、乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要_____。
A: 8.19小时B: 10小时C: 14.63小时D: 15小时
参考答案: B 本题解释:正确答案是B考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。



45、小明有5张人民币,面值合计20元,他来到水果店,称了斤苹果(是整数),按标价应付元,正好等于小明那5张人民币中的2张面值之和,这时果筐里还剩6斤苹果,店主便对小明说:“如果你把这剩下的也都买去,那么连同刚才已经称的,一共就付l0元钱吧。”小明一算,这样相当于每斤比原标价减少了0.5元,本着互利原则,便答允了,问分别是多少?_____。
A: 4斤,6元B: 6斤,4元C: 3斤,7元D: 4斤,3元
参考答案: A 本题解释:参考答案:A题目详解:小明有5张人民币,面值合计20元:只能是105221;加上6斤苹果后10元,则原来斤不到10元;可能是3467既小明一算,这样相当于每斤比原标价减少了0.5元,列等式:既若Y=3则X无整数解……Y=6时,X=4所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>不等式问题>由不等式确定未知量取值范围



46、地上放着一个每一面上都有一个数的六面体箱子,对面两个数的和均为27,甲能看到顶面和两个侧面,这三个面上的数字之和是35;乙能看到顶面和另外两个侧面,且这三个面上的数字和为47。箱子贴地一面的数字是_____。
A: 14B: 13C: 12D: 11
参考答案: B 本题解释:正确答案是B考点趣味数学问题解析题目给出对面数字之和为27,则注意将其余条件中出现的对面合在一起。从这一点出发,可以看出若将甲与乙看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为27×2=54,因此顶面的数字为(35+47-54)÷2=14,于是底面数字为27-14=13,故正确答案为B。



47、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?_____
A: 900B: 180C: 270D: 500
参考答案: D 本题解释:【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18%,可知女警官有500人。



48、(2009上海,第8题)小李买了-套房子,向银行借得个人住房贷款本金15万元,还款期限20年,采用等额本金还款法,截止上个还款期已经归还5万元本金,本月需归还本金和利息共1300元,则当前的月利率是_____。
A: B: C: D:
参考答案: B 本题解释:参考答案:B题目详解:解法一:小李每个月需要偿还的本金为:(元),本月需归还的利息为:(元),本月还欠银行的本金为:(元),因此,当年的月利率为:。解法二:本题的关键在于考生需要了解“等额本金还款”这一名词,了解此种还款方式是指每个月所还的本金是相等的。根据等额本金还款法:每月需偿还本金:万元。设当前月利率为,则万元,解得‰。所以,选B。考查点:数量关系>数学运算>利润利率问题>其他利润相关问题



49、某服装厂生产一种服装,每件的成本是144元,售价是200元。一位服装经销商订购了120件这种服装,并提出:每件服装每降低2元,我就多订购6件。按经销商的要求,这个服装厂售出多少件时可以获得最大的利润,这个最大利润是多少元?_____
A: 124,6912B: 144,6912C: 124,9612D: 144,9612
参考答案: B 本题解释:参考答案:B题目详解:设降低2x元,则订购的总数是件。总利润是:。这个函数是一个开口向下有最大值的抛物线。当时取得最大值,最大利润6912元。所以,选B。考查点:数量关系>数学运算>利润利率问题>销售数量和售价反向变化引起的最大利润问题



50、有一部96集的电视纪录片从星期三开始在电视台播出。正常情况下,星期二到星期五每天播出1集,星期六、星期天每天播出两集,星期一停播。播完35集后,由于电视台要连续3天播出专题报道,该纪录片暂时停播,待专题报道结束后继续按常规播放。那么该纪录片最后一集将在_____播出。
A: 星期二B: 星期五C: 星期六D: 星期日
参考答案: C 本题解释:正确答案是C考点周期问题解析周三开播,每周播4+2×2=8集,每个周期在周二结束;正常播完需要96÷8=12周整,所以正常播完是在周二;播完35集,35÷8=4……3,则此时为周五,故专题报道播出时间为周六、周日、周一,正常情况下,纪录片应播出4集,故原本周二结束播放的纪录片,还剩下4集,则可知最后一集在周六播出。故正确答案为C。



51、甲、乙两名运动员在400米的环形跑道上练习跑步,甲出发1分钟后乙同向出发,乙出发2分钟后第一次追上甲,又过了8分钟,乙第二次追上甲,此时乙比甲多跑了250米,问两人出发地相隔多少米:_____
A: 200B: 150C: 100D: 50
参考答案: B 本题解释:正确答案是B,解析方法一:设甲与乙的速度分别为,由题意,从第一次乙追上甲到第二次追及,甲与乙的路程差为400米,故,解得两人速度差为,由于甲一共跑了11分钟,乙一共跑了10分钟,在后10分钟内,乙比甲多跑了,由于乙最终比甲多跑250米,故甲最开始的1分钟跑了250米,又根据乙2分钟时第一次追上甲,可得该过程中甲与乙的路程差为,故两人最初相距。方法二:直接分析,在两人第一次相遇到第二次相遇的过程中,乙比甲多跑了400米,故在最开始的两分钟内甲比乙多跑150米,故两人开始时相距150米。故正确答案为B。考点:行程问题



52、两工厂各加工480件产品,甲工厂每天比乙工厂多加工4件,完成任务所需时间比乙工厂少10天。设甲工厂每天加工产品X件,则X满足的方程为_____。
A: B: C: D: &#1
参考答案: C 本题解释:参考答案:C题目详解:根据题意,可知:甲完成任务需要;乙完成任务需要天;所以。所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题



53、甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是_____。
A: 15:11B: 17:22C: 19:24D: 21:27
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析设甲步行X小时,乙步行Y小时。故可得方程4X+48Y=3Y+48X,解得X:Y=45:44,所以步行距离之比4X:3Y=15:11,故正确答案为A。



54、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:正确答案是A考点平均数问题解析将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。秒杀技45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。



55、某住户安装了分时电表,白天电价是0.55元,夜间电价是0.3元,计划7月份用电400度,电费不超过160元,那么,白天用电不应该超过多少度?_____
A: 150B: 160C: 170D: 180
参考答案: B 本题解释:【答案】B。解析:设白天用电最大度数为x,夜间用电度数为400-x,那么0.55x+0.3(400-x)≤160,解得x≤160。故选B。



56、甲、乙、丙三队在A、B两块地植树,A地要植树900棵,B地要植树1250棵,已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?_____
A: 5B: 7C: 9D: 11
参考答案: D 本题解释:D【解析】 植树共需(900+1250)÷(24+30+32)=25(天)。乙应在A地干(900-24×25)÷30=10(天),第11天转到B地。故本题正确答案为D。



57、的值是_____。
A: 210B: 240C: 273D: 284
参考答案: A 本题解释:参考答案:A题目详解:原式=(20×20-19×19)+(18×18-17×17)+…+(2×2-1×1)考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题



58、两个游泳运动员在长为30米的游泳池内来回游泳,甲的速度为1米/秒,乙为0.6米/秒,他们分别从两端出发,来回共游了5分钟。转身时间不计,这段时间内他们相遇多少次?_____
A: 120B: 1440C: 2160D: 2880
参考答案: C 本题解释:参考答案:C题目详解:根据题意,可知:第一次相遇,甲、乙总共走了2个全程,第二次相遇,甲、乙总共走了4个全程,乙比甲快,相遇又在P点。所以可以推出:从第一次相遇到第二次相遇,甲从第一个P点到第二个P点,路程正好是第一次的路程,则P到A点的路程为P到B点路程的2倍。假设一个全程为3份,第一次相遇甲走了2份,乙走了4份;第二次相遇,乙正好走了1份到B地,又返回走了1份;2个全程里乙走了:(540÷3)×4=180×4=720千米,乙总共走了:720×3=2160千米。所以,选C考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线多次相遇问题



59、如下图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18B: 19C: 20D: 21
参考答案: C 本题解释:参考答案:C题目详解:根据题意,要求的是最少装灯的数量且路等间距相等,可知A--B和B--C间路灯的间距得相等;所以要求先715和520的最大公约数,715=5×11×13,,可见两者最大公约数为5×13=65,所以每隔65米装一个路灯;根据两端均植树的公式,可知这条街道最少能装:(715+520)÷65+1=20(盏)路灯。所以,选C。考查点:数量关系>数学运算>特殊情境问题>植树问题>两端均植树



60、某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为_____。
A: 5:4:3B: 4:3:2C: 4:2:1D: 3:2:1
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。秒杀技得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。标签直接代入



61、某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?_____
A: 1.23B: 1.80C: 1.93D: 2.58
参考答案: D 本题解释:【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。



62、有一队学生,排成一个中空方阵,最外层的人数共48人,最内层人数为24人,则该方阵共有_____人。
A: 120B: 144C: 176D: 194
参考答案: B 本题解释:参考答案:B题目详解:设最外层每边人,最内层每边人;根据方阵公式:因此外层每边13人,内部空心部分每边人;方阵总共有:;所以,选B考查点:数量关系>数学运算>特殊情境问题>方阵问题>空心方阵问题



63、有甲乙丙三种盐水,浓度分别为5%、8%、9%,质量分别为60克、60克、47克,若用这三种盐水配置浓度为7%的盐水100克,则甲种盐水最多可用_____
A: 49克B: 39克C: 35克D: 50克
参考答案: A 本题解释:【答案】A。解析:



64、1/(12×13)+1/(13×14)+......+1/(19×20)的值为_____。
A: 1/12 B: 1/20 C: 1/30 D: 1/40
参考答案: C 本题解释:C【解析】1/(12×13)+1/(13×14)+......+1/(19×20)=1/12-1/13+1/13-1/14+…1/18-1/19+1/19-1/20=1/12-1/20=1/30。



65、公司某部门80%的员工有本科以上学历,70%有销售经验。60%在生产一线工作过,该部门既有本科以上学历,又有销售经历,还在生产一线工作过的员工至少占员工_____。
A: 20%B: 15%C: 10%D: 5%
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析根据题意,有20%的员工没有本科以上学历,30%的员工没有销售经验,40%的员工没在生产一线工作过,则要使既有本科以上学历,又有销售经历,还在生产一线工作过的员工最少,需使不同时满足这三个条件的员工数最多,即为:20%+30%+40%=90%,则同时满足这三个条件的员工至少占总员工的10%,故正确答案为C。



66、有a、b、c三个数,已知a×b=24,a×c=36,b×c=54,求a+b+c=_____
A: 23B: 21C: 19D: 17
参考答案: C 本题解释: C 解析:此题最好用猜证结合法。试得a、b、c分别为:4、6、9,故选C。若要正面求解:则由前两个式子可得b=2c/3,代入第三个式子可得c=9,进而求得a=4,b=6。,a2=24×36÷54=16,所以a=4,则b=6,c=9,故a+b+c=19。



67、_____
A: 32B: 33C: 34D: 35
参考答案: B 本题解释:正确答案是B考点余数与同余问题解析



68、有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?_____
A: 5台B: 6台C: 7台D: 8台
参考答案: B 本题解释:正确答案是B考点牛吃草问题解析设未用抽水机时中转水池共有水N,每分钟进水Y,根据题意可得N=(2-Y)×40,N=(4-Y)×16,解得Y=2/3,N=160/3。因此10分钟将水排完,需要抽水机160/3÷10+2/3=6台,故正确答案为B。公式:在牛吃草模型背景下,公式为N=(牛数-Y)×天数,其中N表示原有草量的存量,以牛数与天数的乘积来衡量;Y表示专门吃新增加草量所需要的牛数。标签公式应用



69、A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路程等于乙火车5分钟走的路程。乙火车上午8时整从B站开往A站。开出一段时间后,甲火车从A站出发开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是15∶16。那么,甲火车在_____从A站出发开往B站。
A: 8时12分B: 8时15分C: 8时24分D: 8时30分
参考答案: B 本题解释:【答案】B。解析:由“甲火车4分钟所走的路程等于乙火车5分钟所走的路程”可知,甲、乙两火车速度之比为5∶4,取甲、乙速度分别为5、4。相遇时乙火车共行驶1小时,设甲火车共行驶x小时,则依题意有:=,解得x=,即甲火车共行驶了45分钟,所以甲在8时15分出发。



70、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7B: 9C: 10D: 12
参考答案: C 本题解释:正确答案是C考点排列组合问题解析因此正确答案为C。



71、一个农贸市场2斤油可换5斤肉,7斤肉可换12斤鱼,10斤鱼可换21斤豆,那么27斤豆可换几斤油?_____
A: 3B: 4C: 5D: 6
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析



72、5,3,7三个数字可以组成几个三位数?_____。
A: 8个B: 6个C: 4个D: 10个
参考答案: B 本题解释:B【解析】百位上的数可以在5,3,7三个数中选一个,有3种选法;在确定百位上的数后,十位上的数只有两种选法;百位上和十位上的数确定以后,个位上的数只有一种选法。所以三位数的组成方法共有3×2×1=6(种)。故正确答案为B。



73、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?_____
A: 17.25B: 21C: 21.33D: 24
参考答案: B 本题解释:参考答案:B题目详解:解法一:在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨,因此,选B。解法二:水量越大,费用越高,所以要用水最多,所以每个月应该用满10吨,所以总吨数为:。所以,选B。考查点:数量关系>数学运算>特殊情境问题>分段计算问题



74、某人沿电车线路匀速行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔。_____
A: 2分钟B: 4分钟C: 6分钟D: 8分钟
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析解析1:本题关键是能够发掘出“相邻两车之间的距离是相等的”这一隐藏条件,即无论从后面来的车,还是前面来的车,相邻两车的距离相等。设相邻两车的距离为60,车的速度为x,人的速度为y,根据题意得:x+y=60/4,x-y=60/12,联立解得x=10,y=5,因此发车间隔为:60÷10=6,故选择C选项。标签双向数车模型赋值思想公式应用



75、某烟农晾晒一批重量为500斤的烟叶,晾晒期间有3天阴天,其余时间天气晴好,最后收获干烟叶约187斤。已知晴天时烟叶每天较前一天减重20%,阴天时每天较前一天减重10%。则这批烟叶一共晾晒了_____天。
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:正确答案是B考点趣味数学问题解析



76、某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?_____
A: 50%B: 40%C: 30%D: 20%
参考答案: A 本题解释:【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。



77、1 00名村民选一名代表,候选人是甲、乙、丙三人,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票。在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 11B: 12C: 13D: 14
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析注意到在前61张票中,甲领先第二名丙35-16=19张。因此在剩下的100-61=39张票中,首先分配19张给乙,还剩20张。甲要保证一定当选,则应该获得剩余票量的过半数,也即11张。故正确答案为A。标签直接代入构造调整



78、小明和姐姐用2013年的台历做游戏,他们将12个月每一天的日历一一揭下,背面朝上放在一个盒子里,姐姐让小明一次性帮她柚出一张任意月份的30号或者31号。问小明一次至少应抽出多少张日历,才能保证满足姐姐的要求?_____
A: 346 B: 347 C: 348 D: 349
参考答案: C 本题解释:【答案】C。



79、有一根长240米的绳子,从某一端开始每隔4米作一个记号,每隔6米也作一个记号。然后将标有记号的地方剪断,则绳子共剪成_____段。
A: 40B: 60C: 80D: 81
参考答案: C 本题解释:【答案】C。解析:容斥原理,每隔4米作一个记号,则作记号数为240÷4-1=59;每隔6米作一个记号,则作记号数为240÷6-1=39;其中每隔12米的记号重复被作两次,类似的记号数为240÷12-1=19。因此做记号总数为59+39-19=79,即绳子被剪成80段。故正确答案为C。两集合容斥原理公式:|A∪B|=|A|+|B|-|A∩B|



80、小明通常总是步行上学,有一天他想锻炼身体,前路程快跑,速度是步行速度的4倍,后一段的路程慢跑。速度是步行速度的2倍。这样小明比平时早35分钟到校,小明步行上学需要多少分钟?_____
A: 60B: 45C: 120D: 90
参考答案: A 本题解释:参考答案:A题目详解:设路程是,步行速度是:小明步行上学需要分钟;根据题意,列等式得:得到。所以,选A。考查点:数量关系>数学运算>行程问题>初等行程问题



81、一项工程,甲单独做,6天可完成;甲乙合做,2天可完成;则乙单独做,_____天可完成。
A: 1.5 B: 3 C: 4 D: 5
参考答案: B 本题解释: B。设这项工程为单位1,则甲的速度为吉,甲乙共同速度为1/2么乙的速度为1/2-1/6-1/3则乙做完这项工程需要3天。故正确答案为B。



82、取甲种硫酸300克和乙种硫酸250克,再加水200克,可混合成浓度为50%的硫酸;而取甲种硫酸200克和乙种硫酸150克,再加上纯硫酸200克,可混合成浓度为80%的硫酸。那么,甲、乙两种硫酸的浓度各是多少?_____
A: 75%,60%B: 68%,63%C: 71%,73%D: 59%,65%
参考答案: A 本题解释:【答案】A。解析:



83、某试卷共25题,答对的,一题得4分;答错或不答的,一题扣1分,小王得了60分,则小王答对了多少题?_____
A: 14B: 15C: 16D: 17
参考答案: D 本题解释: D [解析] 设答对了x道题,则未答对的题为(25-x)题,可得4x-(25-x)×1=60,解得x=17。故本题选D。



84、连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,则正八面体的体积为_____立方厘米
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点几何问题解析秒杀技该正八面体可看成上下两个正四棱锥组成,注意到每个四棱锥的底面面积为正方体底面面积的一半,每个四棱锥的高为立方体棱长的一半,因此可知每个四棱锥的体积为正方体体积的1/12,故该正八面体体积为正方体体积的1/6,于是其体积为1/6×6^3=36。



85、某A、B、C三地的地图如下图所示,其中A在C正北,B在C正东,连线处为道路。如要从A地到达B地,且途中只能向南、东和东南方向行进,有多少种不同的走法()
A: 9B: 11C: 13D: 15
参考答案: D 本题解释:【答案】D。解析:从A点出发从上向下总共4个路口,按照题目要求,第一个路口到B地有3种走法;第二个路口在第一个路口路线基础上加了2种走法,共5种走法;第三个路口在第二个路口路线的基础上又加了一条路线,共6种走法;最后一个路口只有一个走法。所有总计15种走法。



86、某供销社采购员小张买回一批酒精,放在甲、乙两个桶里,两个桶都未装满。如果把甲桶酒精倒入乙桶,乙桶装满后,甲桶还剩10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升。已知甲桶容量是乙桶的2.5倍,那么,小张一共买回多少升酒精?_____
A: 28B: 41C: 30D: 45
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设甲桶容量为x升,乙桶容量为y升,根据题意可得:y+10=x-20,x=2.5y,解得x=50,y=20,则酒精总量为y+10=30,故正确答案为C。



87、有甲、乙两个项目组。乙组任务临时加重时,从甲组抽调了甲组1/4的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的1/10。此时甲组与乙组人数相等。由此可以得出结论_____。
A: 甲组原有16人,乙组原有11人B: 甲、乙两组原组员人数之比为16∶11C: 甲组原有11人,乙组原有16人D: 甲、乙两组原组员人数之比为11∶16
参考答案: B 本题解释:[解析]正确答案为B。[解析]正确答案为B。设甲组原有a人,乙组原有b人,故由题意可得:(b+a4)×910=110(b+a4)+34a,所以
A:b=16:11。



88、(2009.黑龙江)小强前三次的数学测验平均分是88分,要想平均分达到90分以上,他第四次测验至少要得多少分?_____
A: 98分B: 92分C: 94分D: 96分
参考答案: D 本题解释:参考答案题目详解:前3次测验的总分为:88×3=264分;要使前4次测验的平均分≥90分;即前4次测验的总得分≥90×4=360分;前4次测验的总得分=前3次测验的总分+第四次测验得分,故第四次测得分=前4次测验的总得分-前3次测验的总分;第四次测得分≥360-264=96分。即最少要得96分;所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值



89、将九个自然数分成三组,每组三个数,第一组三个数之积是48。第二组三个数之积是45,三组数字中数字之和最大是多少?_____
A: 15B: 17C: 18D: 20
参考答案: C 本题解释:参考答案:C题目详解:第二组三个数的积是:45只能是,但不可能出现2个3,所以第二组只能是5、9、1;第一组三个数的积是:在剩下的2、3、4、6、7、8中,第一组只能是。(1)若第一组是,则第三组只能是4、6、7,此时,三组数字的数字之和分别为:;(2)若第一组是,则第三组只能是3、8、7,此时,三组数字的数字之和分别为:;所以三组数字中三个数之和最大是18。所以,选C。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分



90、A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?_____
A: 9B: 25C: 49D: 81
参考答案: D 本题解释:【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。



91、把一个长18米,宽6米,高4米的大教室,用厚度为25厘米的隔墙分为3个活动室(隔墙砌到顶),每间活动室的门窗面积都是15平方米,现在用石灰粉刷3个活动室的内墙壁和天花板,平均每平方米用石灰0.2千克,那么,一共需要石灰多少千克_____。
A: 68.8B: 74.2C: 83.7D: 59.6
参考答案: A 本题解释:正确答案是A考点几何问题解析



92、若p和q为质数,且5p+3q=91,则p和q的值为:_____
A: 2,27B: 3,19C: 5,17D: 17,2
参考答案: D 本题解释:参考答案题目详解:5p+3q=91,∴p、q为一奇一偶,∵p和q为质数,∴p、q中必有一数为2,当p=2时,q=27,27为合数,故舍去,当q=2时,p=17。故p=17,q=2。故答案为:17,2。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性



93、有两种电话卡:第一种每分钟话费0.3元,除此以外,无其他费用;第二种电话卡,每分钟0.2元,另有每月固定费用10元(无论拨打与否都要扣)。如果小王每月通话量不低于两个小时,则他办理哪种卡比较合算?_____
A: 第一种B: 第二种C: 两个卡一样D: 无法判断
参考答案: B 本题解释:正确答案是B考点分段计算问题解析设小王每月通话量m分钟,则m&gt;120,使用第一种电话卡费用为0.3×m,使用第二种电话卡费用为10+0.2m,因为0.3m-0.2m-10=0.1m-10&gt;0.1×120-10&gt;0,所以第一种电话卡费用更高。故正确答案为B。



94、某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么他在这一天做了多少个不合格零件?_____
A: 2B: 3C: 4D: 6
参考答案: A 本题解释:正确答案是A考点鸡兔同笼问题解析解析1:把12个零件都看成合格零件,则应得工资120元,与实际所得工资90元还差30元,这是因为每做一个不合格零件,将会从120元中扣掉15元,因此所差30元是因为有30÷15=2个零件不合格。故正确答案为A。解析2:设做了不合格零件A个,合格零件(12-A)个,则有10×(12-A)-5A)=90,解得A=2。故正确答案为A。标签直接代入差异分析十字交叉法



95、一个小于200的数,它除以11余8,除以13余10,那么这个数是多少?_____
A: 118B: 140C: 153D: 162
参考答案: B 本题解释:正确答案是B考点余数与同余问题解析解析1:可直接将4个选项带入,只有B符合题干要求。解析2:根据同余问题口诀”余同取余,和同加和,差同减差,公倍数做周期”,此处符合差同情形,也即除数与余数的差相同,而公倍数为11×13=143,因此被除数的表达式可写为143n-3,符合此表达式的仅B选项。标签直接代入



96、一艘轮船在离港口20海里处船底破损,每分钟进水1.4吨,这艘轮船进水70吨后就会沉没。问:这艘轮船要在沉没前返回港口,它的时速至少要达到多少海里? _____
A: 0.4海里B: 20海里C: 24海里D: 35海里
参考答案: C



97、甲、乙、丙、丁四人,其中每三个人的岁数之和分别是55、58、62、65。这四个人中年龄最小的是_____
A: 7岁B: 10岁C: 15岁D: 18岁
参考答案: C 本题解释:参考答案:C题目详解:根据题意:设四个人的岁数分别为a、b、c、d;则得每三个人的岁数之和分别为a+b+c,a+b+d,a+c+d,b+c+d;这四个数之和为3(a+b+c+d)。四人的年龄和为:a+b+c+d=(55+58+62+65)÷3=80;而年龄大的三个人的年龄之和一定是最大的,由题目可知:四个数中65最大,即年龄大的三个人年龄之和为65;则最后剩下的人的年龄一定是最小的;所以年龄最小的为80-65=15岁;所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值



98、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D



99、在一次国际美食大赛中,中、法、日、俄四国的评委对一道菜品进行打分。中国评委和法国评委给出的平均分是94,法国评委和日本评委给出的平均分是90,日本评委和俄罗斯评委给出的平均分是92,那么中国评委和俄罗斯评委给出的平均分是_____。
A: 93分B: 94分C: 96分D: 98分
参考答案: C 本题解释:C【解析】设中、法、日、俄四国的评委给出的分数分别是A、B、C、D,根据题意可知:A+B=94×2,B+C=90×2,C+D=92×2,又因为A+D=(A+B)+(C+D)-(B+C)=94×2+92×2-90×2=(94+92-90)×2=96×2所以中国评委和俄国评委给出的平均分是96分,本题正确答案为C。



100、开运动会时,高一某班共有28名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人,同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛。问同时参加田径和球类比赛的有多少人?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:参考答案:C题目详解:解法一:根据题意,设:参加游泳为,参加田径为,参加球类为,参加游泳和田径比赛的为,参加游泳和球类比赛的为,参加三项比赛的为,所求参加田径和球类比赛的为:;由三个集合的容斥原理可以得到,同时参加田径和球类比赛的有:人。解法二:设同时参加田径和球类比赛共有人,参加游泳为,参加田径为,参加球类为,由“容斥原理”构建方程有:,解得=3。因此,同时参加田径和球类比赛共有3。所以,选C。考查点:数量关系>数学运算>容斥原理问题>三个集合容斥关系



Tags:村官 数学运算 行测
】【打印繁体】 【关闭】 【返回顶部
下一篇村官行测必考点强化-选词填空答题..

网站客服QQ: 960335752 - 14613519 - 791315772