高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理答题技巧《动量守恒定律》试题预测(2017年最新版)(八)
2017-11-05 16:41:30 来源:91考试网 作者:www.91exam.org 【

1、选择题  质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么碰撞后B球的速度夫小可能是
A.
B.
C.
D.


参考答案:AB


本题解析:分析:碰后A球的动能恰好变为原来的,速度大小变为原来的,但速度方向可能跟原来相同,也可能相反,再根据碰撞过程中动量守恒即可解题.
解答:解:根据碰后A球的动能恰好变为原来的,得:mv2=?mv02
v=±,碰撞过程中AB动量守恒,则mv0=mv+2mvB
解得:vB=或vB=
故选AB.
点评:本题考查的是动量定律得直接应用,注意动能是标量,速度是矢量,难度适中,属于中档题.


本题难度:简单



2、填空题  光滑水平面上停着一辆长为L的平板车,车的一端放着质量为m的木箱,车的另一端站着质量为3m的人,车的质量为5m,若人沿车面走到木箱处将木箱搬放到车的正中央,则在这段时间内,车的位移大小为______.


参考答案:人从车的一端走到另一端时,设车的位移为x1,则人的位移为L-x1,
由动量守恒定律得:3mL-x1t1-(m+5m)x1t1=0,解得:x1=L3;
人搬着箱子走到车正中央时,设车的位移为x2,则人的位移为12L-x2,
由动量守恒定律得:(3m+m)12L-x2t2-5mx2t2=0,解得:x2=2L9,
整个过程,车的位移x=x1-x2=L3-2L9=L9;
故答案为:L9.


本题解析:


本题难度:一般



3、实验题  “验证动量守恒定律”(装置如图所示)。
(1)为了避免碰撞后入射的小球反弹到斜槽上而引起系统误差,入射小球的质量m1与被撞小球的质量m2的关系是m1_________(填“大”、“小”或“等”)于m2(两小球大小相等,直径已量出为d)。

(2)为了保证入射小球水平抛出,必须调整斜槽,使_________。
(3)现提供以下实验步骤:
A.确定铅锤对应点O
B.不放m2,让m1从斜槽滚下,确定它落地点的位置P (地上有复写纸、白纸)
C.放m2于立柱上,让m1从斜槽滚下,与m2正碰后,确定m1、m2落地点的位置M、N
D.量OM,OP,ON
E.看m1OM+m2ON与m1OP是否相等,以验证动量守恒定律
指出上述步骤的不完善之处:答:___________________________


参考答案:(1)大
(2)出口水平
(3)B、C两步骤应是:让m1从同一位置由静止释放,重复10次,……确定,m1(m2)落地点的平均位置;E步骤应是:看


本题解析:


本题难度:一般



4、计算题  如图所示,倾斜轨道AB的倾角为37o,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。a、b为两完全相同的小球,a球由静止从A点释放,在C处与b球发生弹性碰撞。已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin37o=0.6,cos37o=0.8,圆弧管道BC入口B与出口C的高度差为1.8R。求:

⑴a球滑到斜面底端C时速度为多大?a、b球在C处碰后速度各为多少?
⑵要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R′应该满足什么条件?若R′=2.5R,两球最后所停位置距D(或E)多远?
注:在运算中,根号中的数值无需算出。


参考答案:⑴?;?,?⑵;b球将停在D点左侧,距D点0.6R处, a球停在D点左侧,距D点R处。


本题解析:(1)设a球到达C点时速度为v,a球从A运动至C过程,由动能定理有
?①
可得??②
b球在C发生弹性碰撞,系统动量守恒,机械能守恒,设a、b碰后瞬间速度分别为,则有 ③
 ④
由②③④可得??
?⑤
可知,a、b碰后交换速度,a静止,b向右运动。
(2)要使小球b不脱离轨道,有两种情况:
情况一:小球b能滑过圆周轨道最高点,进入EF轨道。则小球b在最高点P应满足??⑥

小球b碰后直到P点过程,由动能定理,有
?⑦
由⑤⑥⑦式,可得?
情况二:小球b上滑至四分之一圆轨道的Q点时,速度减为零,然后滑回D。则由动能定理有?⑧
由⑤⑧式,可得?
,由上面分析可知,b球必定滑回D,设其能向左滑过DC轨道与a球碰撞,且a球到达B点,在B点的速度为,,由于a、b碰撞无能量损失,则由能量守恒定律有??⑨
由⑤⑨式,可得?
故知,a球不能滑回倾斜轨道AB,a、b两球将在A、Q之间做往返运动,最终a球将停在C处,b球将停在CD轨道上的某处。设b球在CD轨道上运动的总路程为S,由于a、b碰撞无能量损失,则由能量守恒定律,有?⑩
由⑤⑩两式,可得? S=5.6R
所以知,b球将停在D点左侧,距D点0.6R处, a球停在D点左侧,距D点R处。
点评:弹性碰撞一般要用动量守恒和碰撞前后动能不变列表达式求解,本题中还要注意小球不脱离轨道有两种情况,其中上升到与圆心等高速度减小为零的情况容易忽视。


本题难度:一般



5、选择题  如图,长为a的轻质细线,一端悬挂在O点,另一端接一个质量为m的小球(可视为质点),组成一个能绕O点在竖直面内自由转动的振子.现有3个这样的振子,以相等的间隔b(b>2a)在同一竖直面里成一直线悬于光滑的平台MN上,悬点距台面高均为a.今有一质量为3m的小球以水平速度v沿台面射向振子并与振子依次发生弹性正碰,为使每个振子碰撞后都能在竖直面内至少做一个完整的圆周运动,则入射小球的速度v不能小于(? )

A.
B.
C.
D.


参考答案:C


本题解析:3m和m弹性碰撞:3mv=3mv′+mv1
×3mv2=×3mv′2+,得v′=

同理3m与第二个m弹性碰撞后得v″=
3m与第三个球碰后得
所以va>vb>vc,只要第三个球能做完整的圆周运动,则前两球一定能做完整的圆周运动.第三个球碰后,由机械能守恒,解之得故C正确,故选C
点评:本题难度较小,应用动量守恒定律求解问题时,首先应明确研究系统,判断初末状态动量


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理试卷《平抛运动的运动规..

网站客服QQ: 960335752 - 14613519 - 791315772