高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高中物理知识点总结《机械能守恒及其条件》高频试题巩固(2019年最新版)(六)
2019-03-16 02:57:07 【

1、选择题  一小球在离地高H处从静止开始竖直下落,在离地高H处,小球的机械能为E0,运动过程中受到的阻力大小与速率成正比,下列图像反映了小球的机械能E随下落高度h的变化规律(选地面为零势能参考平面),其中可能正确的是(? )


参考答案:B


本题解析:根据机械能守恒定律,只有系统内的重力和弹簧弹力做功,系统机械能不变,那么除重力和系统内的弹力外其他力做功就等于机械能的变化量,本题中,小球从高处下落,除重力外还受到空气阻力作用,那么阻力做功就等于减少的机械能,小球下落过程,阻力大小与速率成正比,开始阻力小于重力,小球加速所以阻力逐渐增大,减少的机械能,随阻力增大,图像斜率逐渐增大,选项BD错。如果高度足够高,阻力增大到等于重力后开始匀速运动,阻力不再变化,但整个运动过程没有减速过程,所以落地速度不可能等于0,而以地面为零势能参考面,所以机械能不可能减少到0,选项A错,正确选项为B。


本题难度:一般



2、选择题  下列物体机械能守恒的是(  )
A.做平抛运动的小球
B.进站过程中的火车
C.匀速上升的气球
D.子弹穿过木块过程中,子弹与木块组成的系统


参考答案:A


本题解析:机械能守恒的条件是只有重力或弹簧的弹力做功时,机械能守恒,对于A选项,抛出后,只有重力做功,因此机械能守恒,A正确,火车进站时,摩擦力做负功,机械能减小,B错误,匀速上升气球,升力做正功,机械能增加,C错误;子弹穿过木块过程中,摩擦生 热,机械能减小,D错误。


本题难度:简单



3、计算题  用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。现有一颗质量m=20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。问木块能运动到多高?(取g=10m/s2,空气阻力不计)


参考答案:2.96m


本题解析:
【错解分析】错解:在水平方向动量守恒,有
mv1=Mv+mv2? (1)
式①中v为木块被子弹击中后的速度。木块被子弹击中后便以速度v开始摆动。由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即
?(2)
h为木块所摆动的高度。解①,②联立方程组得到
v=8(m/s)
h=3.2(m)
【错解原因】这个解法是错误的。h=3.2m,就是木块摆动到了B点。如图所示。则它在B点时的速度vB。应满足方程


这时木块的重力提供了木块在B点做圆周运动所需要的向心力。解上述方程得
(m/s)
如果vB<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。而木块在B点时的速度vB=4m/s,是不符合机械能守恒定律的,木块在 B点时的能量为(选A点为零势能点)
木块在A点时的能量为


两者不相等。可见木块升不到B点,一定是h<3.2 m。
实际上,在木块向上运动的过程中,速度逐渐减小。当木块运动到某一临界位置C时,如图所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。此时绳子的拉力为零,绳子便开始松弛了。木块就从这个位置开始,以此刻所具有的速度vc作斜上抛运动。木块所能到达的高度就是C点的高度和从C点开始的斜上抛运动的最大高度之和。
【正解】如上分析,从式①求得vA=v=8m/s。木块在临界位置C时的速度为vc,高度为
h′=l(1+cosθ)?如图所示,

根据机船能守恒定律有
?③
,即?④
从式③和式④得


所以
木块从C点开始以速度vc做斜上抛运动所能达到的最大高度h″为

所以木块能达到的最大高度h为

【点评】物体能否做圆运动,不是我们想象它怎样就怎样这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。所谓需要就是符合牛顿第二定律F向=ma向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。


本题难度:一般



4、简答题  特种兵过山谷的一种方法可简化为图示情景。将一根长为2d的不可伸长的细绳两端固定在相距为dAB两等高点,绳上挂一小滑轮P,战士们相互配合,沿着绳子滑到对面。如图所示,战士甲(图中未画出)水平拉住滑轮,质量为m的战士乙吊在滑轮上,脚离地,处于静止状态,此时AP竖直,然后战士甲将滑轮从静止状态释放,若不计滑轮摩擦及空气阻力,也不计绳与滑轮的质量,求:

(1)战士甲释放前对滑轮的水平拉力F
(2)战士乙滑动过程中的最大速度。


参考答案:(1)mg ?(2)?


本题解析:(1)设乙静止时AP间距离为h,则由几何关系得
        d2+h2=(2dh)2?(1分)
解得?h          (1分)
对滑轮受力分析如图,则有
FT+FTcosθmg?(1分)
FTsinθF         (1分)
解得:   ?Fmg         (2分)
(2)乙在滑动过程中机械能守恒,滑到绳的中点位置最低,速度最大。此时APB三点构成一正三角形。
P与AB的距离为 h/=dcos30°=?(2分)
由机械能守恒有  mg(h/-h)=     (2分)
解得           (2分)


本题难度:一般



5、计算题  如图所示,光滑轨道的DP段为水平轨道,PQ段为半径是R的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P点,一轻质弹簧左端A固定,另一端拴接一个质量为m的小球B,质量也为m的小球C靠在B球的右侧,现用外力作用在C上,使弹簧被压缩了0.4R(弹簧仍在弹性限度内)。这时小球静止于距离P端3R的水平轨道上,若撤去外力,C球运动到轨道的最高点Q后又恰好落回到原出发点。已知重力加速度为g。求

(1)小球C运动到Q点时对轨道的压力多大?
(2)撤去外力前的瞬间,弹簧的弹性势能EP是多少?


参考答案:(1)(2)


本题解析:(1)设小球经过最高点Q时的速度为v,由平抛规律有:
??
联立两式得:
小球C在最高点,由动力学方程得:
解得:
(2)设小球C离开小球B时的速度为v0,由机械能守恒有:

弹簧恢复到原长时脱离,则由能量守恒有:
联立上述各式得:
点评:撤去外力前的瞬间,弹簧的弹性势能作用下,B、C两球获得动能,因此借助平抛运动求出C球抛出速度,再由机械能守恒算出小球C被弹出的速度,从而根据能量守恒,确定撤去外力时弹簧的弹性势能..


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理知识点《粒子在有界磁场..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询