高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理高频考点《动量》试题预测(2019年最新版)(二)
2019-05-21 05:31:57 【

1、简答题  质量为M=It的重锤由静止自由下落1.8 cm后打到要加工的工件上,重锤打到工件上经0.1 s静止不动,试求重锤打到工件上时对工件的平均作用力.(取g="10" m/s2)


参考答案:作用力是70 000 N,方向向下.


本题解析:重锤打击工件的整个过程可分为两个阶段.第一阶段是重锤自由落体运动,下落的时间和与工件接触瞬间的速度可求.第二阶段是重锤打击工件,时间已知,这是研究力、力作用时间和物体运动状态变化的问题,应使用动量定理分析,在哪一段时间范围内使用动量定理呢?一种方法是对重锤打击工件的0.1 s时间内使用动量定理;另一种方法是从重锤开始自由下落到重锤打击工件结束,这一整个过程使用动量定理.哪种方法比较好,通过下面分析就可以看出来.
方法一:重锤下落1.8 m时的速度v=m/s="6" m/s重锤打击工件时,重锤受到向下的重力mg和工件对它向上的力N的作用,对重锤打击工件这段时间使用动量定理,取向上为正方向,重锤受到的总冲量为Nt-mgt,动量的增量为0-mv,根据动量定理有:Nt-mgt=0-mv,工件对重锤的作用力:N=mg-=[1 000×10-]N="70" 000 N.根据牛顿第三定律,重锤对工件的作用力为70 000 N,方向向下.
方法二:重锤下落时间为t0=s="0.6" s,重锤在自由下落过程中只受重力mg,重锤打击工件阶段受到向下的重力mg和工件对它向上的作用力N.对从重锤开始下落到打击工件结束的整个过程使用动量定理,以向下为正方向,重锤受到的冲量总和为mg(t0+t)-Nt,重锤初、末状态的动量均为零.根据动量定理,有:
mg(t0+t)-Nt=0,N=="1" 000×10×(0.6+0.1)/0.1 N="70" 000 N,根据牛顿第三定律,重锤打击工件的作用力是70 000 N,方向向下.上述两种方法中,动量定理使用的范围不同,但最终结果相同.两种方法比较第二种解法比较简单.


本题难度:简单



2、简答题  

(1)在被第二颗子弹击中前,木块沿斜面向上运动离A点的最大距离?
(2)木块在斜面上最多能被多少颗子弹击中?
(3)在木块从C点开始运动到最终离开斜面的过程中,子弹、木块和斜面一系统所产生的内能是多少?


参考答案:(1) 12.5m (2) 3颗(3)10434J


本题解析:(1)木块下滑的加速度为:

第一颗子弹射入前木块的速度:
木块向下运动的距离:
第一颗子弹射入时动量守恒,射入后木块的速度v2,?
解得:
木块向上运动的加速度大小:
木块向上运动的最大距离:
只需1秒,木块的速度就为零,第二颗子弹还未射出,所以离A点最大距离:

(2)由于每颗子弹击中产生的效果相同,上升4米,下降0.5米,一个周期上升3.5米,故只能被3颗子弹击中
(3)物块在斜面上运动的v-t的图像如右图
物块从C到离开的路程:
摩擦力做功产生的热量:

子弹打入时产生的热量:

产生的总热量:


本题难度:一般



3、简答题  如图6-18所示,甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间的摩擦不计.甲与车整体的质量为M=100kg.另有一质量为m=2kg的球.乙站在车对面的地上,身边有若干个质量不等的球,开始时车静止,甲将球以速度v(相对地面)水平抛给乙,乙接到抛来的球后,马上将另一质量为的球以相同的速度v(相对地面)水平抛回给甲,甲接住后再以相同速率v将此球水平抛给乙,这样往复进行,乙每次抛回给甲的质量都在它接到的球的质量上加一个m,球在空中认为始终做直线运动,求:

图6-18
  (1)甲第二次抛出球后车的速度大小?
  (2)从第二次算起,甲抛出多少个球后不能接到乙抛回来的球?


参考答案:(1)(2)第7次抛出球后不能接到乙抛回来的球


本题解析:(1)以球、甲和车作为系统 第一次抛球:(抛后甲与车速度
  第二次抛球: 第三次抛球:
  第n次抛球: 相加后得
  当n=2时,
  (2)欲使车上的人再不能接到乙抛回来的球,有,即有
  解得n≥6.7 故甲第7次抛出球后不能接到乙抛回来的球.


本题难度:一般



4、计算题  如图,半径R=0.8m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D与长为L的水平面相切于D点,质量M=1.0kg的小滑块A从圆弧顶点C由静止释放,到达最低点D点后,与D点m=0.5kg的静止小物块B相碰,碰后A的速度变为vA="2.0" m/s,仍向右运动.已知两物块与水平面间的动摩擦因数均为µ=0.1,A、B均可视为质点,B与E处的竖直挡板相碰时没有机械能损失,取g=10m/s2.求:

(1)滑块A刚到达圆弧的最低点D时对圆弧的压力;
(2)滑块B被碰后瞬间的速度;
(3)要使两滑块能发生第二次碰撞,DE的长度L应满足的条件.


参考答案:(1)F=30 N(2)vB=4 m/s(3)L<5m


本题解析:(1)设小滑块运动到D点的速度为v,由机械能守恒定律有:MgR=Mv2 (2分)
在D点,由牛顿第二定律有:F - Mg=M  (2分)
联立得: F=30 N  (1分)
由牛顿第三定律,小滑块在D点时对圆弧的压力为30N  (1分)
(2) 设B滑块被碰后的速度为vB,由动量守恒定律:M v=MvA+mvB   (3分)
得: vB=4 m/s  (1分)
(3) 由于B物块的速度较大,如果它们能再次相碰一定发生在B从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则
对于A物块,由动能定理:  (2分)
解得:SA="2" m  (1分)
对于B物块,由于B与竖直挡板的碰撞无机械能损失,由动能定理:
     (2分)
解得:SB="8" m(1分)
两滑块刚好第二次发生接触的条件2L=SA+ SB="10" m  (1分)
要使两滑块能发生第二次碰撞L<5m (1分)
考点:考查了动能定理,动量守恒定律,牛顿运动定律


本题难度:困难



5、计算题  科学家设想在未来的航天事业中用太阳帆来加速星际宇宙飞船,按照近代光的粒子说,光由光子组成,飞船在太空中张开太阳帆,使太阳光垂直射到太阳帆上,太阳帆面积为S,太阳帆对光的反射率为100%,设太阳帆上每单位面积每秒到达n个光子,每个光子的动量为p,如飞船总质量为m,求飞船加速度的表达式.


参考答案:


本题解析:根据动量定理,,加速度为 a=
先利用动量定理求出力,再根据牛顿第二定律求解。


本题难度:简单



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理高频考点《电场强度》高..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询