1、简答题 如图所示,在长为2L、宽为L的ABCD区域内有一半的空间存在场强为E、方向平行于BC边的匀强电场,现有一个质量为m,电量为e的电子,以平行于AB边的速度v0从区域的左上角A点射入该区域,不计电子所受的重力,则:
(1)当无电场的区域位于左侧时(如图甲),求电子射出ABCD区域时的动能;
(2)当无电场区域的左边界距AD的距离为x时(如图乙),要使这个电子能从区域的右下角的C点射出,电子的初速度v0应满足什么条件.

参考答案:
(1)电子先做匀速运动,进入电场后做类平抛运动,设电子恰好从C点射出电场.
? 电子在电场中运动的加速度a=eEm
设电子恰好从C点射出电场时在电场中的运动时间为t,则有
? L=v0t,L=12at2
解得:v0=
本题解析:
本题难度:一般
2、选择题 平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v-t图线,如图所示。若平抛运动的时间大于2t1,下列说法中正确的是?(?)

A.图线b的斜率为一常量,与坐标轴标度的选取无关
B.t1时刻的速度方向与初速度方向夹角为30°
C.2t1时刻的动能是初动能的4倍
D.0~t1时间内重力的功率与t1~2t1时间内重力的功率之比为1∶4
参考答案:A
本题解析:平抛运动水平方向是匀速,竖直方向是自由落体运动,图线b的斜率代表重力加速度g,A正确;t1时刻的水平速度与竖直速度大小相等,所以t1时刻的速度方向与初速度方向夹角为45?,B错误;2t1时刻的竖直速度大小为初速度的2倍,故2t1时刻的动能是初动能的5倍,C错误;0~t1时间内的竖直位移与t1~2t1时间内的竖直位移之比为1∶3,故两段时间内重力做功之比为1∶3,重力的功率之比也为1∶3,D错误。
本题难度:简单
3、选择题 对平抛运动的物体,若g已知,再给出下列哪组条件,可确定其初速度大小( )
A.水平位移
B.下落高度
C.落地时速度大小和方向
D.落地时位移大小和方向
参考答案:知道末速度大小和方向,只要将末速度正交分解到水平和竖直方向,水平方向的分速度就等于初速度,所以C正确;
知道末位移大小和方向,则将末位移分解到水平和竖直方向,由竖直位移和g求时间,再用水平位移除以时间,就得到了初速度,所以D正确.
故选CD.
本题解析:
本题难度:简单
4、计算题 在倾角为37°的斜面上,从A点以6m/s的速度水平抛出一小球,小球落在B点,如图所示,求小球刚落到斜面时的速度方向,AB两点间距离和小球在空中飞行时间。(g=10m/s)
参考答案:arctan
本题解析:小球落到B点时速度偏角为α,运动时间为t,则:
tan37°=
?又因为tan37°=
?
解得t=0.9s? B两点间水平距离S=v0t=6×0.9m=5.4m
A.B两点间距离
在B点时,
所以,小球捧到斜面时速度方向与水平方向间的夹角为arctan
本题考查平抛运动规律的应用,小球落在斜面上根据位移与水平方向成37°角,把位移分解为水平分位移和竖直分位移,由竖直方向和水平方向的分运动列公式,由tan37°求解运动时间,再由分运动求得水平位移和竖直位移,由勾股定理求得合位移
本题难度:一般
5、简答题 如图所示,固定斜面倾角为45°,从斜面上方A点处由静止释放一个质量为m的弹性小球,在B点处和斜面碰撞,碰撞后速度大小不变,方向变为水平,经过一段时间在C点再次与斜面碰撞.已知AB两点的高度差为h,重力加速度为g,不考虑空气阻力.求:BC间的竖直高度H.

参考答案:小球下降过程中,做自由落体运动,落到斜面B点的速度为v,
满足:2gh=v2
解得:v=
本题解析:
本题难度:一般