高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理试卷《粒子在复合场中运动》高频试题预测(2019年最新版)(八)
2019-07-11 03:39:46 【

1、计算题  在xoy 平面第Ⅰ、Ⅱ象限中,存在沿y轴负方向的匀强电场,场强为E=,在第Ⅲ、Ⅳ象限中,存在垂直于xoy平面方向如图所示的匀强磁场,磁感应强度B2 =" 2" B1 =" 2" B ,带电粒子a、b先后从第Ⅰ、Ⅱ象限的P、Q两点(图中没有标出)由静止释放,结果两粒子同时进入匀强磁场B1、B2中,再经过时间t第一次经过y轴时恰在点M(0,-)处发生正碰(即碰前两粒子速度方向相反),碰撞前带电粒子b的速度方向与y 轴正方向成60°角,不计粒子重力和两粒子间相互作用。求:

(1)两带电粒子的比荷及在磁场中运动的轨道半径;
(2)带电粒子释放的位置P、Q两点坐标及释放的时间差。


参考答案:(1)?、
(2)P、Q两点的坐标分别为(l、2l)(-3l、8l)?时间差为


本题解析:(1)由题知a、b两带电粒子在M处发生正碰,其运动轨迹如图,由图可得:

带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,进入磁场时的速度为
,可得

解得:
同理可得:
(2)由题可得:对P点释放的粒子有
粒子由静止释放做匀加速直线运动,进入磁场时的速度为
加速度
由匀变速直线运动规律得
解得,则P点坐标为(l、2l)
同理



解得,则Q点坐标为(-3l、8l)
带电粒子释放的时间差为

点评:本题关键是由带电粒子在M处发生正碰,画出粒子匀速圆周运动的轨迹,利用几何知识找出圆心及相应的半径。从而找到圆弧所对应的圆心角.由圆心和轨迹用几何知识确定半径是研究带电粒子在匀强磁场中做匀速圆周运动的重要方法.


本题难度:一般



2、计算题  如图所示,在某空间建立一坐标xoy,其间充满着x正方向的匀强电场,场强E =2.0V/m和垂直xoy平面向外的匀强磁场,磁感强度B=2.5T。今有一带负电微粒质量?kg,电量q=-5×10-7? C。在该空间恰能做匀速直线运动。求:

(1)试分析该题中重力可否忽略不计(需通过计算说明)。
(2)该微粒运动的速度。
(3)若该微粒飞经y轴的某点M时,突然将磁场撤去而只保留电场,则微粒将再次经过y轴的N点,则微粒从M到N运动的时间为多长,M、N两点间的距离为多大?(图中M、N在坐标上未标出)


参考答案:(1)重力不能忽略不计;(2)1.6m/s; 与y轴负方向成60?角;(3)s=1.536m


本题解析:
试题分析: (1) 根据已知条件可计算出电场力:F=qE=5×10-7×2.0N=1.0×10-6N
重力:
重力与电场力在同一个数量级——所以重力不能忽略不计。
(2)该微粒运动的速度。由于微粒恰好作直线运动,所以合力为0。微粒受重力、电场力和洛仑兹力如图示:


?由图可得速度方向与y轴负方向成θ角,满足, 所以:θ=60?
(3)用运动的合成与分解的方法将速度v沿重力方向和沿电场力反方向分解的来求M、N两点间的距离。其解答过程如下:

?
由上述两式联立可得运动时间t=0.48s,M、N两点间的距离s=1.536m。
该题也可以选择用类似于斜面上的平抛运动来求M、N两点间的距离。将s分解为沿v方向的s cosθ和垂直v方向的s sinθ,则: scosθ= vt?
由上述两式联立可得运动时间t=0.48s,M、N两点间的距离s=1.536m。


本题难度:一般



3、计算题  (13分)如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C(重力不计),从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30?,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm。(注意:计算中?取1.73)
求:
⑴带电微粒进入偏转电场时的速率v1;
⑵偏转电场中两金属板间的电压U2;
⑶为使带电微粒在磁场中的运动时间最长,B的取值满足怎样的条件?


参考答案:⑴1.0×104m/s⑵U2 =100V⑶B≥0.1T


本题解析:⑴带电微粒经加速电场加速后速度为v,根据动能定理

=1.0×104m/s?(3分)
⑵带电微粒在偏转电场中只受电场力作用,做类平抛运动。在水平方向微粒做匀速直线运动
水平方向:
带电微粒在竖直方向做匀加速直线运动,加速度为a,出电场时竖直方向速度为v2
竖直方向:
?(3分)
由几何关系
?得U2 =100V?(2分)

⑶带电微粒进入磁场做匀速圆周运动,洛伦兹力提供向心力,设微粒轨道半径为R,当粒子从左边边界离开时,运动时间最长,对应的临界条件是:轨迹与右边边界相切。由几何关系知
??(2分)
设微粒进入磁场时的速度为v/

?得 ?=0.1T?(2分)
所以:B≥0.1T?(1分)
点评:难度较大,对于带电粒子在交替复合场中的运动,首先判断受力情况,画出大致的运动轨迹,根据电场力和洛伦兹力的方向和作用判断


本题难度:一般



4、计算题  (16分)如图所示,在xoy平面直角坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场,其他区域存在垂直于坐标平面向外的匀强磁场。有一质量为m、电量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场。已知OP=h,不计粒子重力,求:

(1)粒子经过Q点时的速度大小;
(2)匀强电场电场强度的大小;
(3)粒子从Q点运动到M点所用的时间。


参考答案:(1)(2)(3)


本题解析:⑴粒子类平抛到Q点时将速度分解如图。

(2)
P到Q类平抛,得
X方向:
Y方向:
解得?
竖直方向
解得

⑶由题得,磁偏转的半径?
?及?得?
Q到M点,圆心角
则运动时间
代入磁感应强度B,得?
本题考查带电粒子在复合场中的运动,难度较大,粒子在电场中做类平抛运动,把末速度分解,可求得Q点的合速度,根据平抛运动特点,把位移分解,列公式求解电场强度E的大小,由几何关系可知粒子在磁场中的偏转半径,由洛伦兹力提供向心力可求得磁感强度和周期大小,求得弧线对应圆心角大小,再求运动时间


本题难度:简单



5、选择题  如图4所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为、有效电阻的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为,则


A.金属杆下滑的最大速度
B.在此过程中电阻R产生的焦耳热为
C.在此过程中电阻R产生的焦耳热为
D.在此过程中流过电阻R的电量为


参考答案:B


本题解析:感应电动势为??①
感应电流为??②
安培力为??③
根据平恒条件得?
解得:??
由能量守恒定律得:
又因
所以
由法拉第电磁感应定律得通过R的电量为
所以选项B正确


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高中物理知识点复习《运动的描述..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询