高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高中物理知识点大全《动能定理及应用》试题预测(2017年最新版)(六)
2017-08-09 09:01:22 来源:91考试网 作者:www.91exam.org 【
微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!

1、选择题  假如在足球比赛中,某球员在对方禁区附近主罚定位球,并将球从球门右上角擦着横梁踢进球门。球门的高度为h,足球飞入球门的速度为v,足球的质量为m,则该球员将足球踢出时对足球做的功W为(不计空气阻力)( )
A.等于
B.大于
C.小于
D.因为球的轨迹形状不确定,所以做功的大小无法确定


参考答案:A


本题解析:考点:
专题:动能定理的应用专题.
分析:对足球从球员踢出到飞入球门的过程研究,有球员对足球做的功和重力做功,根据动能定理求解.
解答:解:对足球从球员踢出到飞入球门的过程研究,根据动能定理得
W-mgh=mv2
得到W=mgh+mv2
故选A
点评:动能定理应用要选择研究的过程,本题是用动能定理求变力的功.也可以根据功能关系分析,除重力和弹力以外的力做功等于物体机械能的变化.


本题难度:简单



2、选择题  质点所受的合外力F随时间t变化的规律如图所示,力的方向始终在一直线上.已知t=0时,质点的速度为零,则下列判断中正确的是(  )
A.0、t2、t4时刻质点的加速度最大
B.t2时刻质点的动能最大
C.t4时刻质点回到出发点
D.力F始终对物体做正功




参考答案:A、根据牛顿第二定律得知:加速度与合外力成正比,则由图可知,0、t2、t4时刻质点的加速度为零.故A错误.
B、分析质点的运动情况:0-t2时间内,做加速运动;在t2-t4时间内沿原方向做减速运动.则知t2时刻质点的速度,动能也最大.故B正确.
C、由上分析可知,质点做单向直线运动,t4时刻质点不可能回到出发点.故C错误.
D、力F的方向先与位移方向相同,做正功,后与位移方向相反做负功.故D错误.
故选B


本题解析:


本题难度:简单



3、计算题   (11分)如图8所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,
圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O与A、D在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:

(1)滑块第一次至左侧AC弧上时距A点的最小高度差h.
(2)滑块在斜面上能通过的最大路程s.


参考答案:(1)μRcosθcotθ (2)


本题解析:(1)由动能定理得:
mgh-μmgcosθ·R/tanθ=0
得h=μRcos2θ/sinθ=μRcosθcotθ
(2)滑块最终至C点的速度为0时对应在斜面上的总路程最大,由动能定理得
mgRcosθ-μmgcosθ·s=0
得:s=.


本题难度:一般



4、简答题  如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的金属杆a?b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a?b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图(乙)所示.已知轨距为L=2m,重力加速度g=l0m/s2,轨道足够长且电阻不计.
91考试网
(1)当R=0时,求杆a?b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值Pm;
(4)当R=4Ω时,求随着杆a?b下滑回路瞬时电功率每增大1W的过程中合外力对杆做的功W.


参考答案:(1)由图可知,当R=0时,杆最终以v=2m/s匀速运动,产生电动势
? E=BLv=0.5×2×2V=2V?
由右手定则判断可知杆中电流方向从b→a
(2)设杆运动的最大速度为v,杆切割磁感线产生的感应电动势?E=BLv
由闭合电路的欧姆定律得:I=ER+r
杆达到最大速度时满足?mgsinθ-BIL=0
联立解得:v=mgsinθB2L2R+mgsinθB2L2r
由图象可知:斜率为k=4-22m/(s?Ω)=1m/(s?Ω),纵截距为v0=2m/s,
得到:mgsinθB2L2r=v0 mgsinθB2L2=k
解得:m=0.2kg,r=2Ω?
(3)金属杆匀速下滑时电流恒定,则有? mgsinθ-BIL=0
得 I=mgsinθBL=1A
电阻箱消耗电功率的最大值Pm=I2Rm=4W
(4)由题意:E=BLv,P=E2R+r
得?P=B2L2v2R+r
瞬时电功率增大量△P=B2L2v22R+r-B2L2v21R+r
由动能定理得
?W=12mv22-12mv21
比较上两式得 W=m(R+r)2B2L2△P
代入解得 W=0.6J?
答:(1)当R=0时,求杆a b匀速下滑过程中产生感生电动势E的大小2V,杆中电流方向从b→a.
(2)金属杆的质量m为0.2kg,阻值r是2Ω;
(3)金属杆匀速下滑时电阻箱消耗电功率的最大值Pm是4W.
(4)当R=4Ω时,随着杆a b下滑回路瞬时电功率每增大1W的过程中合外力对杆做的功W是0.6J.


本题解析:


本题难度:一般



5、简答题  如图,一倾角为θ=30°的足够长固定光滑斜面底端有一与斜面垂直的挡板M,物块A、B之间用一与斜面平行的轻质弹簧连接且静止在斜面上.现用外力沿斜面向下缓慢推动物块B,当弹簧具有5J的弹性势能时撤去推力,释放物块B.已知物块A、B的质量分别为5kg和10kg,弹簧的弹性势能的表达式为EP=

1
2
kx2,其中弹簧的劲度系数为k=1000N/m,x为弹簧的形变量,g=10m/s2.求
(1)撤掉外力时,物块B的加速度大小;
(2)外力在推动物块B的过程中所做的功;
(3)试判断物块A能否离开挡板M?若A能离开挡板M,求出物块A刚离开挡板M时,物块B的动能;若A不能离开挡板M,求出物块A与挡板M之间的最小作用力.


参考答案:(1)弹簧具有的势能为EP=5J,
EP=12kx12=12×1000x12=5,
解得,弹簧的压缩量:x1=0.1m,
撤掉外力时,由牛顿第二定律得:
kx1-mBgsinθ=mBa,
解得,物块B的加速度:a=5m/s2;
(2)物块B静止在斜面上时,
由平衡条件得:kx0=mBgsinθ,
解得:x0=0.05m,
外力推动物块B所做的功:
W=EP-12kx02-mBgsinθ(x1-x0),
代入数据解得:W=1.25J;
(3)假设物块A刚好离开挡板M,
弹簧的伸长量x2kx2=mAgsinθ,
解得:x2=0.025m,
此时弹簧的弹性势能和重力势能的增加量之和:
E=12kx22+mBgsinθ(x1+x2)=6.5625J>EP=5J,
故物块A未离开挡板M.
设物块B上滑到速度为零时,弹簧的形变量为x3
若弹簧处于压缩状态:EP=12kx32+mBgsinθ(x1-x3),
x31=0,x32=0.1m(不合理舍掉),
若弹簧处于伸长状态:EP=12kx32+mBgsinθ(x1+x3)
解得:x31=0,x32=-0.1m(不合理舍掉),
综上可得,物块B的速度为零时,弹簧恰好处于原长,
此时物块A对挡板的作用力最小,作用力F=mAgsinθ=25N;
答:(1)撤掉外力时,物块B的加速度为5m/s2;
(2)外力在推动物块B的过程中所做的功为1.25J;
(3)物块A不能离开挡板M;物块A与挡板M之间的最小作用力为25N.


本题解析:


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理知识点总结《波的干涉和..

网站客服QQ: 960335752 - 14613519 - 791315772