微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快,两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。那么甲回到出发点共用多少小时?
解析:由甲、乙两人下山的速度是上山的1.5倍,有:
⑴甲、乙相遇时,甲下山600米路程所需时间,相当于甲上山走600÷1.5=400米的时间。所以甲、乙以上山的速度走一小时,甲比乙多走600+400=1000米。
⑵乙到山顶时,甲走到半山腰,也就是甲下山走了 的路程。而走这 路程所需时间,相当于甲上山走山坡长度 ÷1.5= 的时间。所以在这段时间内,如
保持上山的速度,乙走了一个山坡的长度,甲走了1+ = 个山坡的长度。所以,甲上山的速度是乙的 倍。
用差倍问题求解甲的速度,甲每小时走:1000÷( -1)× =4000米。
根据⑴的结论,甲以上山的速度走1小时的路程比山坡长度多400,所以山坡长3600米。
1小时后,甲已下坡600米,还有3600-600=3000米。所以,甲再用3000÷6000=0.5小时。
总上所述,甲一共用了1+0.5=1.5小时。
评注: 本题关键在转化,把下山的距离再转化为上山的距离,这种转化是在保证时间相等的情况下。通过转化,可以理清思路。但是也要分清哪些距离是上山走的,哪些是下山走的。