1、单选题 在一周长为50m的圆形花坛周围种树,如果每隔5m种一颗,共要种_____棵树。
A: 9
B: 10
C: 11
D: 12
参考答案: B
本题解释:正确答案是B考点计数模型问题解析根据圆周植树计算模型,始端与终端重合,故一共需种50÷5=10棵树,正确答案为B。标签公式应用
2、单选题 自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?_____
A: 4
B: 6
C: 8
D: 12
参考答案: A
本题解释:正确答案是A考点排列组合问题解析由条件”N的个位数字与十位数字都是质数”可知,N只能是由2、3、5、7四个质数组合构成,可一一列举。此四个数字组合后构成如下质数:23、37、73、53。所以正确答案为A。标签数字特性
3、单选题 公司某部门80%的员工有本科以上学历,70%有销售经验。60%在生产一线工作过,该部门既有本科以上学历,又有销售经历,还在生产一线工作过的员工至少占员工_____。
A: 20%
B: 15%
C: 10%
D: 5%
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析根据题意,有20%的员工没有本科以上学历,30%的员工没有销售经验,40%的员工没在生产一线工作过,则要使既有本科以上学历,又有销售经历,还在生产一线工作过的员工最少,需使不同时满足这三个条件的员工数最多,即为:20%+30%+40%=90%,则同时满足这三个条件的员工至少占总员工的10%,故正确答案为C。
4、单选题 龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米。乌龟不停地跑,但兔子却边跑边玩,它先跑一分钟,然后玩十五分钟,又跑二分钟,然后玩十五分钟,又跑三分钟,然后玩十五分钟,……,那么先到达终点的比后到达终点的快多少分钟?_____
A: 104分钟
B: 90.6分钟
C: 15.6分钟
D: 13.4分钟
参考答案: D
本题解释:正确答案是D考点趣味数学问题解析乌龟到达终点所需时间为:5.2÷3×60=104分钟,兔子如果不休息,则需要时间:5.2÷20×60=15.6分钟。而实际兔子休息的规律为每跑1、2、3、······分钟后,休息15分钟,因为15.6=1+2+3+4+5+0.6,所以兔子总共休息的时间为:15×5=75分钟,即兔子跑到终点所需时间为:15.6+75=90.6分钟,因此兔子到达终点比乌龟快:104-90.6=13.4分钟,故正确答案为D。
5、单选题 一个班里有30名学生,有12人会跳拉丁舞,有8人会跳肚皮舞,有10人会跳芭蕾舞。问至多有几人会跳两种舞蹈?_____
A: 12人
B: 14人
C: 15人
D: 16人
参考答案: C
本题解释:正确答案是C考点统筹规划问题解析要使会跳两种舞蹈的人最多,则尽量在三种舞蹈之间进行匹配,使得两两匹配的人数之和最多。因此就不能将一种舞蹈只与另一种舞蹈进行全额匹配,例如不能将会跳肚皮舞的8人全部与拉丁舞匹配。实际上,为实现两两匹配的最多,则每组用于匹配的人数应相等或接近。从最少人数出发,会跳肚皮舞的8人,将其划分时要考虑拉丁舞和芭蕾舞人数相差2,故在划分此8人时注意这一点,可将8人划分为5人和3人。其中5人除了会肚皮舞之外,还会拉丁舞;3人会肚皮舞之外还会芭蕾舞。此时拉丁舞与芭蕾舞还各自剩7人、7人,又可以匹配得到7人既会拉丁舞又会芭蕾舞。会跳两种舞的人数至多为15人。故正确答案为C。秒杀技假定拉丁+肚皮、肚皮+芭蕾、芭蕾+拉丁的人数分别为x、y、z,则根据题意可知x+y≤8,x+z≤12,y+z≤10,求取x+y+z的最大值。对于前述三个不等式,先将不等号变为等号尝试求解一下,恰好可得x=5,y=3,z=7,代回验证可知所有条件均满足。因此可知x+y+z的最大值为15。故正确答案为C。标签构造调整