1、单选题 如图所示,街道ABC在B处拐弯,在街道一侧等距装路灯,要求A、B、C处各装一盏路灯,这条街道最少装多少盏路灯?_____
A: 18
B: 19
C: 20
D: 21
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,灯距应取715和520的最大公约数,即65米;则最少装路灯的数量为:(715+520)÷65+1=20盏。所以,选C考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
2、单选题 先将线段AB分成20等分,线段上的等分点用“△”标注,再将该线段分成21等分,等分点用“O”标注(AB两点都不标注),现在发现“△”和“O”之间的最短处为2厘米,问线段AB的长度为多少?_____
A: 2460厘米
B: 1050厘米
C: 840厘米
D: 680厘米
参考答案: C
本题解释:参考答案:C
题目详解:解法一:前后两次段数的最小公倍数是:20×21=420,再由“△”和“O”之间的最短长度只可能发生在线段AB的两端,且“△”和“O”之间的最短处为2厘米,则:AB=20×21×2=840cm。所以,选C。解法二:两种不同标号间的最短距离为:
3、单选题 (2008.辽宁)张警官一年内参与破获的各类案件有100多件,是王警官的5倍,李警官的五分之三,赵警官的八分之七,问李警官一年内参与破获多少案件?_____
A: 175
B: 105
C: 120
D: 不好估算
参考答案: A
本题解释:参考答案:A
题目详解:设张警官破获的案件为x件,则:根据“是王警官的5倍,李警官的五分之三,赵警官的八分之七”可知,张警官破获了5×3×7×N件,又因100故张警官破获的案件只能为105;则李警官一年内参与破获了案件:105÷3/5=175件。因此,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题&g t;三个数的最大公约数和最小公倍数
4、单选题 (2009-北京社会)甲、乙、丙三个滑冰运动员在一起练习滑冰,已知甲滑一圈的时间,乙、丙分别可以滑一又四分之一圈和一又六分之一圈,若甲、乙、丙同时从起点出发,则甲滑多少圈后三人再次在起点相遇?_____
A: 8
B: 10
C: 12
D: 14
参考答案: C
本题解释:参考答案:C
题目详解:根据题意,“三人再次在起点相遇”,则三人滑的圈数必须都为整数;相同时间内,甲、乙、丙滑的圈数之比为:
5、单选题 有一种长方形小纸板,长为19毫米,宽为11毫米。现在用同样大小的这种小纸板拼合成一个正方形,问最少要几块这样的小纸板拼合成一个正方形,问最少要几块这样的小纸板?_____
A: 157块
B: 172块
C: 209块
D: 以上都不对
参考答案: C
本题解释:参考答案:C
题目详解:本题可转化为:求19与11的最小公倍数,即为:19×11=209;则组成正方形的边长为209,从而可得组成正方形的小纸板数为: