1、单选题 自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?_____
A: 不存在
B: 1个
C: 2个
D: 3个
参考答案: C
本题解释:正确答案是C解析由"
除以10的余数为9,P除以9的余数为8,P除以8的余数为7",满足差同减差,对应口诀可知其符合表达式为360n-1,由于100<P<1000,则100<360n-1<1000,所以n能取1、2,则满足条件的P有两个,即359和719,故正确答案为C。注释:同余问题需要掌握如下口诀:余同取余,和同加和,差同加差,最小公倍数做周期。口诀解释:余同取余,例如"一个数除以7余1,除以6余1,除以5余1",可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如"一个数除以7余1,除以6余2,除以5余3",可见除数与余的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如"一个数除以7余3,除以6余2,除以5余1",可见除数与余的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。余数与同余问题标签同余问题
2、单选题
A: A
B: B
C: C
D: D
参考答案: C
本题解释:正确答案是C考点计数模型问题解析
3、单选题 某单位派60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?_____
A: 12
B: 14
C: 15
D: 29
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析由“有34人穿黑裤子”可知穿蓝裤子的人数为60-34=26,又知“有12人穿白上衣蓝裤子”,则穿黑上衣蓝裤子的人数为26-12=14,而又有“29人穿黑上衣”,因此穿黑上衣黑裤子的人数为29-14=15,故正确答案为C。
4、单选题 有一种红砖,长24厘米、宽12厘米、高5厘米,至少用多少块红砖才能拼成一个实心的正方体?_____
A: 600块
B: 800块
C: 1000块
D: 1200块
参考答案: D
本题解释:正确答案是D考点倍数约数问题解析要拼成正方体,则每条边的长度必须是24、12、5的最小公倍数,也即为120,此时每条边上需要的砖数分别是5、10、24,因此总共需要红砖5×10×24=1200(块)。故正确答案为D。秒杀技拼成实心立方体后体积必然为立方数,而一块砖的体积为24×12×5=1440,结合四个选项,只有D选项与之相乘后为立方数。故正确答案为D。
5、单选题 20+19-18-17+16+15-14-13+12+11···+4+3-2-1=_____。
A: 10
B: 15
C: 19
D: 20
参考答案: D
本题解释:正确答案是D考点计算问题解析解析1:原式=(20-18)+(19-17)+(16-14)+(15-13)+···+(4-2)+(3-1)=2+2+2+2+···+2+2=2×10=20。故正确答案为D。解析2:原式=20+(19-18-17+16)+(15-14-13+12)+…+(3-2-1)=20。故正确答案为D。