1、单选题 甲容器中有浓度为4%的盐水250克,乙容器中有某种浓度的盐水若干克。现从乙中取出750克盐水,放人甲容器中混合成浓度为8%的盐水。问乙容器中的盐水浓度约是多少?_____
A: 9.78%
B: 10.14%
C: 9.33%
D: 11.27%
参考答案: C
本题解释:正确答案是C解析浓度问题标签十字交叉法
2、单选题 某天,林伯的水果摊三种水果的价格分别为:苹果6元/斤,芒果5元/斤,香蕉3/斤。当天,苹果与芒果的销售量之比为4:3,芒果与香蕉的销售量之比为2:11,卖香蕉比卖苹果多收入102元,林伯这天共销售三种水果_____斤。
A: 75
B: 94
C: 141
D: 165
参考答案: B
本题解释:正确答案是B考点经济利润问题解析将两个比例合并:苹果与芒果的销售量之比为8:6,芒果与香蕉的销售量之比为6:33。故苹果、芒果、香蕉的销售量之比为8:6:33。故设三者的销售量分别为8x、6x、33x,从而有3×33x-6×8x=102,解得x=2。故共销售水果(8+6+33)×2=94斤。故正确答案为B。
3、单选题 甲乙两人计划从A地步行去B地,乙早上7:00出发,匀速步行前往,甲因事耽搁,9:00才出发。为了追上乙,甲决定跑步前进,跑步的速度是乙步行速度的2.5倍,但每跑半小时都需要休息半小时,那么甲什么时候才能追上乙?_____
A: 10:20
B: 12:10
C: 14:30
D: 16:10
参考答案: C
本题解释:正确答案是C考点行程问题解析解析1:设乙步行速度为1,则甲跑步速度为2.5,则9:00时甲乙两人之间的距离为2,5小时后,两人相距2-(2.5×0.5-1)×5=0.75,此时,再经过半小时甲刚好追上乙,即共用了5个半小时,在14:30追上,故正确答案为C。解析2:
4、单选题 一项工程由甲、乙、丙三个工程队共同完成需要15天,甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相同,三队同时开工2天后,丙队被调往另一工地,甲、乙两队留下继续工作。那么,开工22天以后,这项工程_____。
A: 已经完工
B: 余下的量需甲乙两队共同工作1天
C: 余下的量需乙丙两队共同工作1天
D: 余下的量需甲乙丙三队共同工作1天
参考答案: D
本题解释:正确答案是D考点工程问题解析设工程总量为150,则甲、乙、丙三个工程队每天效率的和为150÷15=10,又知"甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相同",可知甲、乙和丙三个工程队每天效率分别为3、3和4,开工22天,即甲和乙工作22天,丙工作2天,此时剩余工程量为:150-(3+3)×22-4×2=10,因此余下工作量需甲乙丙三队共同工作1天即可,故正确答案为D。标签赋值思想
5、单选题 如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,AE的长度是_____。
A: 6.9
B: 7.1
C: 7.2
D: 7.4
参考答案: C
本题解释:正确答案是C考点几何问题解析四边形EBCD与三角形AED的面积之比为3:2,则三角形ABC与三角形AED的面积之比为5:2。已知AD的长度是CD的2倍,则AD的长度是AC的2/3。作DF垂直AB于点F,则DF=2/3BC(相似三角形原理),三角形ABC的面积=1/2×AB×BC,三角形AED的面积=1/2×AE×DF=1/2×AE×2/3BC代入之前的比例式,可得AE=3/5AB=36/5=7.2。所以正确答案为C。