1、单选题 有面积为1平方米、4平方米、9平方米、16平方米的正方形地毯各10块,现有面积为25平方米的正方形房间需用以上地毯来铺设,要求地毯互不重叠而且刚好铺满。问最少需几块地毯?_____
A: 6块
B: 8块
C: 10块
D: 12块
参考答案: B
本题解释:正确答案是B考点统筹规划问题解析
2、单选题 甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?_____
A: 2
B: 3
C: 4
D: 5
参考答案: B
本题解释:正确答案是B考点行程问题解析解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。公式:两运动体从两端同时出发,相向而行,不断往返:第N次迎面相遇,两运动体路程和=全程×(2N-1);第N次追上相遇,两运动体路程差=全程×(2N-1)。标签公式应用
3、单选题 某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师老师带领,刚好能够分配完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心剩下学员多少人? _____
A: 36
B: 37
C: 39
D: 41
参考答案: D
本题解释:【答案】D 【解析】假设原来每位钢琴教师所带学员为a人,每位拉丁舞教师带学员b人,则有76=5a+6b,因为76和6b为偶数,所以5a也为偶数,而a为质数,则只能a=2,所以b=11。因此目前培训中心剩4×2+3×11=41名学员。
4、单选题 小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元
B: 2元
C: 3元
D: 4元
参考答案: C
本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。
5、单选题 一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39。求这个三位数?_____
A: 196
B: 348
C: 267
D: 429
参考答案: C
本题解释:正确答案是C考点多位数问题解析采用排除法,根据”各位上的数的和是15”,排除A。根据”如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39”,可以将B、C、D各项的值分别乘以3然后减去39,可得1005、762、1248,只有C满足条件。故正确答案为C。标签直接代入