1、单选题 有一列数:3,7,10,17,27,44…从第三个数起,每个数都等于它前面两个数的和,那么第1998个数除以5的余数是多少?_____
A: 4
B: 3
C: 2
D: o
参考答案: D
本题解释:参考答案
题目详解:我们将这列数每个数分别被5除,观察余数有什么规律。这列数每个数分别被5除所得的余数依次是:3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,…从上述结果可知,余数每20个数出现一周期循环。那么有:
2、单选题 从装满1000克浓度为50%的酒精瓶中倒出200克酒精,再倒入蒸馏水将瓶加满。这样反复三次后,瓶中的酒精浓度是多少_____
A: 22.5%
B: 24.4%
C: 25.6%
D: 27.5%
参考答案: C
本题解释:【解析】C。每次操作后,酒精浓度变为原来的,因此反复三次后浓度变为。
3、单选题 某代表团有756名成员,现要对A、B两议案分别进行表决,且他们只能投赞成票或反对票。已知赞成A议案的有476人,赞成B议案的有294人,对A、B两议案都反对的有169人,则赞成A议案且反对B议案的有_____。
A: 293人
B: 297人
C: 302人
D: 306人
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析解析1:反对B议案的有756-294=462人,两者都反对的共169人,则赞成A且反对B的有462-169=293人。故正确答案为A。解析2:赞成A或B议案的人有756-169=587人,赞成A议案的有476人,赞成B议案的有294人,则两者都赞成的共476+294-587=183人,则赞成A且反对B的有476-183=293人。故正确答案为A。标签两集合容斥原理公式公式应用
4、单选题 筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10
B: 10.12
C: 11.16
D: 13.50
参考答案: C
本题解释:C解析:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是,720×15.5=11160(米)。故本题选C。
5、单选题 三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是_____。
A: A等和B等共6幅
B: B等和C等共7幅
C: A等最多有5幅
D: A等比C等少5幅
参考答案: D
本题解释:【答案】D。解析:解析1:分别以等级代表其数量,根据题意可得A+B+C=10……①;3A+2B+C=15……②②-①×2可得:C-A=5,因此正确答案为D。解析2:代入选项法。根据题意可得A+B+C=10……①;3A+2B+C=15……②此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。类似的方法可排除选项B、C。故正确答案为D。解析3:根据题意可得A+B+C=10……①;3A+2B+C=15……②由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。解析4:根据题意可得A+B+C=10……①;3A+2B+C=15……②对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。