1、单选题 100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22
B: 21
C: 24
D: 23
参考答案: A
本题解释:总的人数是固定的100人,要使参加人数第四多的活动最多,且每项的人数不一样,则其他的项的人数要尽量的少,那么,最后三名人数最少分别为1,2,3。设第四名的人数为x人,则前三名最少分别为(x+1),(x+2),(x+3),那么:1+2+3+x+(x+1)+(x+2)+(x+3)=100,解得x=22,故参加人数第四多的活动最多有22人参加。故选A。
2、单选题 计算:(1×2×3+2×4×6+…+100×200×300)/(2×3×4+4×6×8+…+200×300×400)的值为_____。
A: 1/8
B: 1/4
C: 3/2
D: 5/4
参考答案: B
本题解释:B【解析】分析分子部分每个加数(连乘积)的因数,可以发现前后之间的倍数关系,从而把“1×2×3”作为公因数提到前面,分母部分也做类似的变形。原式=1×2×3+8×(1×2×3)+…+1000000×(1×2×3)2×3×4+8×(2×3×4)+…+1000000×(2×3×4)=[1×2×3×(1+8+…+1000000)]/[2×3×4×(1+8+…+1000000)]=(1×2×3)/(2×3×4)=1/4因此,本题正确答案为B。
3、单选题 某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训? _____
A: 8
B: 10
C: 12
D: 15
参考答案: D
本题解释:【解析】D。本题可直接看出答案,乙教室一次45人,共有1290人,所以乙次数一定为偶数,又因为一共27次,所以甲一定为奇数,直接选15。
4、单选题 某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果。现将苹果个数相同的箱子算作一类。设其中箱子数最多的一类有
A: 4
B: 5
C: 6
D: 7
参考答案: C
本题解释:参考答案:C
题目详解:解法一:将苹果个数相同的箱子算成一类,那么每一类都可以看成一个“抽屉”。这样可以构造出144-120+1=25个抽屉,又由于:126÷25=5…1,由抽屉原理2可以得到,
5、单选题 423×187-423×24-423×63的值是_____。
A: 41877
B: 42300
C: 42323
D: 42703
参考答案: B
本题解释: B 【解析】原式可化为423×(187-24-63)。