1、单选题 32名学生需要到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船),往返一次需要5分钟,如果9时整开始渡河,9时17分时,至少有_____人还在等待渡河。
A: 16
B: 17
C: 19
D: 22
参考答案: C
本题解释:正确答案是C考点计数模型问题解析因为船只能载4人,则每次只能运过3人。往返一次5分钟,是往返时间。于是可知从9时开始,9时5分、9时10分、9时15分各运3人到岸,9时17分尚有4人在船上前往对岸,因此在等待渡河的人数为32-3×3-4=19,故正确答案为C。
2、单选题 某按以下规定收取燃气费:如果用气量不超过60立方米,按每立方米0.8元收费,如果用气量超过60立方米,则超过部分按每立方米1.2元收费。某用户8月份交的燃气费平均每立方米0.88元,则该用户8月份的燃气费是_____。
A: 66元
B: 56元
C: 48元
D: 61.6元
参考答案: A
本题解释:正确答案是A考点分段计算问题解析
3、单选题 水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水,若用12个注水管注水,8小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用_____注满水池。
A: 12小时
B: 36小时
C: 48小时
D: 72小时
参考答案: D
本题解释:正确答案是D考点牛吃草问题解析设原有水量为N,每小时排水量为Y,可得如下:N=(12-Y)×8=(9-Y)×24,解得N=36,Y=7.5;若用8个注水管,注满时间为t,则有36=(8-7.5)×t,解得t=72小时,故正确答案为D。
4、单选题 在1000以内,除以3余2,除以7余3,除以11余4的数有多少个?_____
A: 4
B: 5
C: 6
D: 7
参考答案: B
本题解释:正确答案是B考点余数与同余问题解析同余问题,不符合“余同取余,和同加和,差同减差,最小公倍数做周期”的口诀,通过余数组获得通式。除以3余2的余数组为2、5、8、11、 14、17、···;除以7余3的余数组为3、10、17、···。结合此两者可知满足前两条的被除数可写成21n+17,其余数组为17、38、59、···;而除以11余4的余数组为4、15、26、37、48、59、···。结合此两者可知满足三条的被除数可写成231n+59。由题意:0≤231n+59≤1000,解得0≤n≤4。所以这样的数共有5个,故正确答案为B。口诀解释:余同取余,例如“一个数除以7余1,除以6余1,除以5余1”,可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如“一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如“一个数除以7余3,除以6余2,除以5余1”,可见除数与余数的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。
5、单选题 某大学某班学生总数为32人。在第一次考试中有26人及格,在第二次考试中有24人及格。若两次考试中都没有及格的有4人,那么两次考试都及格的人数是_____。
A: 22
B: 18
C: 28
D: 26
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析由题意,两次考试中至少有一次及格的人数为32-4=28(人),设两次考试都及格的人数是n,则有:28=26﹢24-n,解得n=22。故正确答案为A。注:两集合容斥原理公式为A∪B=A+B-A∩B。标签两集合容斥原理公式