1、单选题 某单位有60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?_____
A: 12
B: 14
C: 15
D: 19
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析解析1:穿白色上衣的有60-29=31人,其中穿白上衣黑裤子的有31-12=19人,穿黑上衣黑裤子的有34-19=15人。解析2:设白上衣黑裤子有a人,黑上衣黑子裤有b人,黑上衣蓝裤子有c人,根据题意有a+b+c=60-12,a+b=34,b+c=29,则b=34+29-(60-12)=15人。故正确答案为C。
2、单选题 甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是_____。
A: 15:11
B: 17:22
C: 19:24
D: 21:27
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析设甲步行X小时,乙步行Y小时。故可得方程4X+48Y=3Y+48X,解得X:Y=45:44,所以步行距离之比4X:3Y=15:11,故正确答案为A。
3、单选题 _____
A: A
B: B
C: C
D: D
参考答案: B
本题解释:正确答案是B考点几何问题解析因为正三角形的周长和正六边形的周长相等,又因为正三角形和正六边形的边长的个数比是1:2,所以其边长之比为2:1,假设正三角形的边长为2,则正六边形的边长为1。正六边形可以分成6个小正三角形,如下图所示,边长为1的小正三角形面积:加长为2的正三角形面积=1:4。所以正六边形面积:正三角形面积=6:4=1.5,故正确答案为B。
4、单选题 如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,AE的长度是_____。
A: 6.9
B: 7.1
C: 7.2
D: 7.4
参考答案: C
本题解释:正确答案是C考点几何问题解析四边形EBCD与三角形AED的面积之比为3:2,则三角形ABC与三角形AED的面积之比为5:2。已知AD的长度是CD的2倍,则AD的长度是AC的2/3。作DF垂直AB于点F,则DF=2/3BC(相似三角形原理),三角形ABC的面积=1/2×AB×BC,三角形AED的面积=1/2×AE×DF=1/2×AE×2/3BC代入之前的比例式,可得AE=3/5AB=36/5=7.2。所以正确答案为C。
5、单选题 对厦门大学计算机系100名学生进行调查,结果发现他们喜欢看NBA和足球、赛车。其中58人喜欢看NBA;38人喜欢看赛车,52人喜欢看足球,既喜欢看NBA又喜欢看赛车的有18人,既喜欢看足球又喜欢看赛车的有16人,三种都喜欢看的有12人,则只喜欢看足球的有_____。
A: 22人
B: 28人
C: 30人
D: 36人
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析