1、单选题 1至1000中所有不能被5、6、8整除的自然数有多少个?_____
A: 491
B: 107
C: 400
D: 600
参考答案: D
本题解释: D【解析】 只要求出1~1000内5的倍数、6的倍数或8的倍数或5×6,5×8,24,120的倍数,再根据容斥原理就可求得5的倍数有5、10……1000共200个6的倍数有6、12……996共166个8的倍数有8、16……共125个24的倍数有24、48……984共41个30的倍数有30、60……990共33个40的倍数有40、80……1000共25个120的倍数有120、240……960共8个根据容斥原理可知,5或6或8的倍数有(200+166+125)-(33+25+41)+8=400(个)不能被5或6或8中任一个整除的有1000-400=600(个)故本题选D。
2、单选题 将1~9九个自然数分成三组,每组三个数,第一组三个数之积是48,第二组三个数之积是45,三组数字中数字之和最大是多少?_____
A: 15
B: 17
C: 18
D: 20
参考答案: C
本题解释:【答案】C。解析:显然要对48和45进行乘法拆分,显然45的可拆分情况较少,故先拆分45=1×5×9,由此可知48=2×3×8=2×4×6两种拆分情况,由此可知第三组三个数对应48的拆分也有两种情况:4、6、7;3、7、8。于是可知三组数字中加和最大的一组为3、7、8,加和为18。故正确答案为C。
3、单选题 在一条长100米的道路上安装路灯,路灯的光照直径是10米,请问至少要安装多少盏灯?_____
A: 11
B: 9
C: 12
D: 10
参考答案: D
本题解释:D【解析】最少的情况发生在,路灯的光形成的圆刚好相切。要路灯的光照直径是10米,即灯照的半径为5米,因此第一个路灯是在路的开端5米处,第二个在离开端15米处,第三个在25米处……第十个在95米处,即至少要10盏。
4、单选题 用6位数字表示日期,如980716表示的是1998年7月16日。如果用这种方法表示2009年的日期,则全年中六个数字都不相同的日期有多少天?_____
A: 12
B: 29
D: 1
参考答案: C
本题解释:正确答案是C考点多位数问题解析根据题目条件,显然要知道有多少个符合要求的日期,只需实际构造即可,而在构造的过程中,显然顺序是先安排月份,再安排具体日期。假设2009年AB月CD日,满足要求,它可以简写成“09ABCD”,由于月份当中不能有0,所以不能是01—10月,而11月有两个1,也应该排除,故AB=12;此时原日期可简写成“0912CD”,由于已经出现了0、1、2,所以肯定不是01—30号,而31号里又有1了,排除,因此满足题目要求的日期为0个,故正确答案为C。标签构造调整
5、单选题 船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分
B: 12点15分
C: l2点20分
D: 12点30分
参考答案: A
本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。