1、单选题 现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍。两次共放了22个球。最终甲箱中球比乙箱_____。
A: 多1个
B: 少1个
C: 多2个
D: 少2个
参考答案: A
本题解释:正确答案是A,全站数据:本题共被作答1次,正确率为0.00%,易错项为C解析第一次放入共6个球,所以第二次共放入22-6=16个球,所以列方程得:2甲+3乙+4丙=16,此时观察可知,乙的球数必须为偶数,否则方程不平衡,所以乙中是原来的2个球的箱子。代入1,3两值可知,甲=3,丙=1。所以甲中有9个球,乙中有8个球,多1个。故正确答案为A。速解解不定方程的常用技巧--利用奇偶性求解不定方程。考点不定方程问题笔记编辑笔记
2、单选题 一只自动开关的电灯,早上六点整开灯,然后整数分钟后关闭,关闭时间是开灯时间的3倍,再又重新开启,开、关自动进行周期性的循环,每一循环开关的时间都一样。在早上6点11分以前5秒是关的,在上午9点5分以后5秒是开的,上午10点15分也是开的。那么上午11点后第一次由关到开的时间是_____。
A: 11点08分
B: 11点14分
C: 11点24分
D: 11点32分
参考答案: C
本题解释:【解析】在早上6点11分以前5秒灯是关的,这说明每次灯亮的时间不超过11分钟,设灯亮的时间为x分钟(x<11),在上午9点5分以后5秒灯是开的,即六点开始过了(9-6)×60+5+1=186分时灯是开的,则有186除以4x的余数应小于等于x。而在1-10中,x=9或5。再根据“上午10点15分也是开的”,即从六点开始过了(10-6)×60+15=255分时灯是开的。同理,255除以4X9的余数是3,255除以4×5的余数是l5,只有9符合条件,即每次灯亮9分钟。上午6-11点时有300分钟,若要灯刚好由关转成开,那么这个时间要能被36整除。在大于300的数中能被36整除的最小数为324。则上午11点后第一次由关到开的时间是11点24分。
3、单选题 在春运高峰时,某客运中心售票大厅站满等待买票的旅客,为保证售票大厅的旅客安全,大厅入口处旅客排队以等速度进入大厅按次序等待买票,买好票的旅客及时离开大厅。按照这种安排,如果开10个售票窗口,5小时可使大厅内所有旅客买到票;如果开12个售票窗口,3小时可使大厅内所有旅客买到票,假设每个窗口售票速度相同。由于售票大厅入口处旅客速度增加到原速度的1.5倍,为了在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为_____个。
A: 15
B: 16
C: 18
D: 19
参考答案: C
本题解释:C。设每个窗口的服务速度为x人/小时,大厅入口处旅客速度为y人/小时,大厅内乘客有s人。开10个售票窗口,5小时可使大厅内所有旅客买到票,说明s+5y=5×10x;开12个售票窗口,3小时可使大厅内所有旅客买到票,说明s+3y=3×12x;y=72,s=15x。大厅入口处旅客速度增加到原速度的1.5倍,即1.5y,要想在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为t个,s+2×1.5y=2×tx,解得t=18。
4、单选题 有甲乙丙三种盐水,浓度分别为5%、8%、9%,质量分别为60克、60克、47克,若用这三种盐水配置浓度为7%的盐水100克,则甲种盐水最多可用_____
A: 49克
B: 39克
C: 35克
D: 50克
参考答案: A
本题解释:【答案】A。解析:
5、单选题 射箭运动员进行训练,10支箭共打了93环,且每支箭的环数都不低8环。问命中10环的箭数最多能比命中9环的多几支?_____
A: 2
B: 3
C: 4
D: 5
参考答案: D
本题解释:正确答案是D,解析解析1:由题可知,”每支箭的环数都不低于8环”,所以环数只能取8、9、10环。假设10支箭都打了8环,则最低要打80环,而实际打的93环则是由于有9环和10环的贡献。与80环相比,每一个9环相当于多1环,每一个10环相当于多2环,所以设10环的有a支,9环的b支,则得到方程2a+b=93-80。这时,利用代入法,从”最多”的选项开始代入,a-b=5,解得a=6,b=1,即10环的是6支,9环是1支,8环是3支,可以成立。故正确答案为D。解析2:从另一个极端出发,如果每支箭的环数都打中10环,应该是100环,而实际为93环,少了7环。现在要求中10环的箭数”最多”能比命中9环的多几支,即要求10环尽量多,同时9环尽量少。所以少的7环尽可能由8环的箭产生,但是由于每支8环只能差2的整数倍,所以最多差6环,还需要有一支9环的。所以10环6支,9环1支,8环3支可以让差距最大。故正确答案为D。速解如果列方程,属于不定方程,未知数的个数多于方程个数,需要靠代入法解决。而题目真正的考点在于”最多”这个词的理解,即10环尽量多,9环尽量少,在这个前提下分析题目,才能得到最简的方式。考点计数模型问题笔记编辑笔记