1、单选题 有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整
B: 11点20分
C: 11点40分
D: 12点整
参考答案: B
本题解释:正确答案是B考点周期问题解析三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。标签最小公倍数
2、单选题 有甲、乙、丙、丁四个数,已知甲的8%为9,乙的9%为10,丙的10%为11,丁的11%为12,则甲、乙、丙、丁四个数中最小的数是_____。
A: 甲
B: 乙
C: 丙
D: 丁
参考答案: D
本题解释:正确答案是D考点计算问题解析根据题意,甲=9÷0.08=100÷8+100,乙=10÷0.09=100÷9+100,丙=11÷0.10=100÷10+100,丁=12÷0.11=100÷11+100,不难发现丁数最小,故正确答案为D。
3、单选题 有一1500米的环形跑道,甲、乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以相反方向跑,2分钟后二人相遇,则乙的速度为_____
A: 330米/分钟
B: 360米/分钟
C: 375米/分钟
D: 390米/分钟
参考答案: B
本题解释:正确答案:B解析:依据题意:(甲的速度-乙的速度)×50=1500,(甲的速度+乙的速度)×2=1500,推出甲、乙各为390、360。故答案为B。
4、单选题 完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。现按甲、乙、丙的顺序轮班工作,每人工作一小时换班。当工程完工时,乙总共干了多少小时?_____
A: 8小时
B: 7小时44分
C: 7小时
D: 6小时48分
参考答案: B
本题解释:正确答案是B考点工程问题解析解析1:设工程总量为360,则甲乙丙的工作效率分别为20、15、12,三人每小时工作总量为47。由题意可知三人轮班即为循环周期问题,用360除以47商7余数为31,甲乙丙轮班每人7小时后,乙继续工作的工作量为31-20=11。所以最终乙总共干了:7小时+11/15×60分=7小时44分,故正确答案为B。解析2:设工程总量为360,则甲乙丙的工作效率分别为20、15、12,甲每小时比乙多干5,乙每小时比丙多干3,因此乙工作时间必定小于24/3=8小时。观察选项有6小时、7小时和8小时,可选7为参考点,甲乙丙轮班每人工作7小时共完成:(20+15+12)×7=329<360,因此乙工作时间在7小时和8小时之间,故正确答案为B。
5、单选题 某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?_____
A: 10850
B: 10950
C: 11050
D: 11350
参考答案: B
本题解释:正确答案是B考点鸡兔同笼问题解析先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。标签差异分析