1、单选题 某大学某班学生总数为32人。在第一次考试中有26人及格,在第二次考试中有24人及格。若两次考试中都没有及格的有4人,那么两次考试都及格的人数是_____。
A: 22
B: 18
C: 28
D: 26
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析由题意,两次考试中至少有一次及格的人数为32-4=28(人),设两次考试都及格的人数是n,则有:28=26﹢24-n,解得n=22。故正确答案为A。注:两集合容斥原理公式为A∪B=A+B-A∩B。标签两集合容斥原理公式
2、单选题 某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升
A: 3
B: 4
C: 5
D: 6
参考答案: D
本题解释:正确答案是D,解析设每台收割机每天的工作效率为1,则工作总量为
3、单选题 一个金鱼缸,现已注满水。有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中。现知道每次从金鱼缸中溢出水量的情况是:第一次是第二次的1/3,第三次是第二次的2倍。问三个假山的体积之比是多少?_____
A: 1:3:5
B: 1:4:9
C: 3:6:7
D: 6:7:8
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析放入小假山,溢出水的体积为V,则小假山的体积为V;小假山取出,放入中假山,中假山除了将已溢出的体积V填满,还溢出3V体积的水,则中假山的体积是4V;同理,小假山和大假山除了将已溢出的体积4V填满,还溢出了6V,则大假山的体积为4V+6V-V=9V,可得三者之比为1:4:9。故正确答案为B。
4、单选题 从一副完整的扑克牌中至少抽出_____张牌,才能保证至少有5张牌的花色相同。
A: 17
B: 18
C: 19
D: 20
参考答案: C
本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌包括四种花色的A到K,共有4×13=52张以及2张大小王。要保证5张牌花色相同,根据抽屉原理,此时的"最不利"情形是每一种花色恰好不到5张,即红桃、方块、黑桃、梅花各抽出4张,且抽中了2张大小王,共计4×4﹢2=18张;最后抽出1张任意花色的牌,则可保证有5张花色相同。所以至少需要抽出18﹢1=19张牌,正确答案选C。
5、单选题 某市为合理用电,鼓励各用户安装峰谷电表,市原电价每度0.53元,改新表后,每晚10点至次日早8点为低谷,每度收0.28元,其余时间为高峰期,每度0.56元,为改装新电表每个用户须收取100元改装费,假定某用户每月用200度电,两个不同时段用电量各为100度,那么改装电表12个月后,该用户可节约_____元。
A: 161
B: 162
C: 163
D: 164
参考答案: D
本题解释:正确答案是D考点经济利润问题解析电表改装之前该用户每年的用电费用为200×0.53×12=1272元;改装电表之后,该用户这一年的用电费用加上改装费用共(0.28×100+0.56×100)×12+100=1108元,该用户改装电表前后可节约1272-1108=164元。故正确答案为D。