1、单选题 某单位有60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?_____
A: 12
B: 14
C: 15
D: 19
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析解析1:穿白色上衣的有60-29=31人,其中穿白上衣黑裤子的有31-12=19人,穿黑上衣黑裤子的有34-19=15人。解析2:设白上衣黑裤子有a人,黑上衣黑子裤有b人,黑上衣蓝裤子有c人,根据题意有a+b+c=60-12,a+b=34,b+c=29,则b=34+29-(60-12)=15人。故正确答案为C。
2、单选题 一条双向铁路上有11个车站,相邻两站都相距7千米。从早晨7点,有18列货车由第11站顺次发出,每隔5分钟发一列,都驶向第一站,速度都是每小时60千米;早晨8点,由第1站发一列客车,向第11站驶出,时速100千米,在到达终点前,货车与客车都不停靠任何一站。那么,在_____,客车能与3列货车先后相遇。
A: 在第四、五站之间
B: 在第五、六站之间
C: 在第六、七站之间
D: 在第七、八站之间
参考答案: B
本题解释:正确答案是B考点行程问题解析铁路上共有11个站,相邻两站相距7千米,则共有70千米的距离,每辆货车之间的距离是5千米。早晨8点,第一列货车已经开出60千米,与第一站相距10千米。客车和第一辆货车相遇时行驶路程为6.25千米,之后每行驶3.125公里即相遇一列货车,则相遇点距第一站点的距离是6.25+3.125n。要使客车在两个站点之间与连续3列货车相遇,则这三列货车中的第一列与客车相遇的地点距离站点不超过:7-3.125×2=0.75千米。即6.25+3.125n除以7余数<0.75,取n=7时商为4,余数为0.125<0.75。则客车行驶在第五、六站之间,分别和第8、9、10辆货车相遇。故正确答案为B。
3、单选题 从一副完整的扑克牌中至少抽出_____张牌,才能保证至少有5张牌的花色相同。
A: 17
B: 18
C: 19
D: 20
参考答案: C
本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌包括四种花色的A到K,共有4×13=52张以及2张大小王。要保证5张牌花色相同,根据抽屉原理,此时的"最不利"情形是每一种花色恰好不到5张,即红桃、方块、黑桃、梅花各抽出4张,且抽中了2张大小王,共计4×4﹢2=18张;最后抽出1张任意花色的牌,则可保证有5张花色相同。所以至少需要抽出18﹢1=19张牌,正确答案选C。
4、单选题 某家具店购进100套桌椅,每套进价200元,按期望获利50%定价出售,卖掉60套桌椅后,店主为了提前收回资金,打折出售余下的桌椅,售完全部桌椅后,实际利润比期望利润低了18%,余下的桌椅是打_____出售的。
A: 七五折
B: 八二折
C: 八五折
D: 九五折
参考答案: C
本题解释:正确答案是C考点经济利润问题解析根据题意可得,期望利润为:200×50%×100=10000,则实际利润为:10000×(1-18%)=8200,设余下的折扣为y,原来售价为:200×(1+50%)=300,则有:300×60+300×y×(100-60)=200×100+8200,解得y=0.85,即八五折,故正确答案为C。
5、单选题 某公司100名员工对甲、乙两名经理进行满意度评议,对甲满意的人数占全体参加评议的3/5,对乙满意的人数比甲的人数多6人,对甲乙都不满意的占满意人数的1/3多2人,则对甲乙都满意的人数是_____。
A: 36
B: 26
C: 48
D: 42
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析对甲满意的人数为60人,对乙满意的人数为66人,设对甲、乙都满意的人数为X,则对甲、乙都不满意的人数为1/3X+2,由两集合容斥原理的推论公式可知,100-(1/3X+2)=60+66-X,解得X=42,故正确答案为D。两集合容斥原理推论公式:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数。