1、单选题 甲乙两人从相距1350米的地方,以相同的速度相对行走,两人在出发点分别放下1个标志物。再前进10米后放下3个标志物。前进10米放下5个标志物,再前进10米放下7个标志物,以此类推。当两个相遇时,一共放下了几个标志物?_____
A: 4489
B: 4624
C: 8978
D: 9248
参考答案: D
本题解释:正确答案是D考点数列问题解析以10米为间隔,可知1350米的路程被分成135个间隔,因此共有136个放标志物的点,按甲乙平分为两组,每组为68个点,故甲或乙最后均放置135个标志物。由求和公式可知总数为(1+135)÷2×68×2=9248。因此正确答案为D。注:等差数列求和公式,和=(首项+末项)×项数÷2秒杀技易知全程被分为135个间隔,从而得出每组放置标志物的点为偶数,注意到每次放下标志物都为奇数,从而可知每组的标志物总数必然为偶数。又考虑到甲乙两组是相同的,而选项中C、D分别为A、B的两倍,而A、B中B为偶数,故可猜测B为一人放下的标志物数,而D为答案。标签猜题技巧
2、单选题 甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。已知甲、乙、丙三人同时出发,甲和丙相遇后5分钟,乙与丙相遇。如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。问A、B两地距离为多少米?_____
A: 8000米
B: 8500米
C: 10000米
D: 10500米
参考答案: D
本题解释:正确答案是D考点行程问题解析本题理解的重点在于:在甲和丙相遇时,甲比乙多走的距离为后来乙丙一起走的距离。有了这个思想,就容易解出,甲和丙相遇时,甲比乙多走的距离为(75+65)×5=700m,假设甲和丙相遇的时候,甲走了a分钟,则(85-75)a=700,解得a=70。所以两地相距为(85+65)×70=10500米,故正确答案为D。
3、单选题 一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,完成的天数恰好是整数。如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩40个不能完成,已知甲、乙工作效率的比是7:3。则甲每天做_____。
A: 30个
B: 40个
C: 70个
D: 120个
参考答案: C
本题解释:正确答案是C考点工程问题解析由题意,甲、乙两个人的工作效率为7:3,甲比乙每天多做4X个,两个轮流方式用时相等,但是第一种轮流方式做的零件数比第二种方式多,因此a为奇数(若a为偶数,两种方式完成的零件个数会相等),所以在第一种方式中,最后一天做的是甲,甲|乙|甲…|甲,完成需要a天,第二种方式中最后一天做的是乙,乙|甲|乙…|乙,a天后还有40个没有完成,4X=40,X=10,甲每天做7X=7×10=70(个)。因此正确答案为C。
4、单选题 有两堆材料需要搬运。工人先搬了第一堆材料的一半,然后分出3/5的人手去搬第二堆材料,其余工人继续搬第一堆。当第二堆材料刚好搬完时,第一堆材料还剩下10%没搬。则第二堆材料的数量比第一堆少_____。
A: 40%
B: 50%
C: 55%
D: 60%
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析假定工人共计5人,两堆材料的量分别为A、B。根据题意可得(A/2-0.1A)÷2=B÷3,可得B=0.6A,因此第二堆材料的数量比第一堆少40%。故正确答案为A。
5、单选题 从1,3,9,27,81,243这六个数中,每次取出若干个数(每次取数,每个数只能取一次)求和、可以得到一个新数,一共有63个数。如果把它们以小到大依次排列起来是:1,3,4,9,10,12,…。那么,第60个数是_____。
A: 220
B: 380
C: 360
D: 410
参考答案: C
本题解释:正确答案是C考点计算问题解析逆向考虑,则为从大到小排列,具体如下:第63个数:243+81+27+9+3+1第62个数:243+81+27+9+3第61个数:243+81+27+9+1则第60个数为243+81+27+9=270+90=360,故正确答案为C。