1、单选题 有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12
B: 15
C: 14
D: 13
参考答案: C
本题解释:参考答案:C
题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
2、单选题 实验小学举办学生书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。一、二年级参展的书法作品共有多少幅?_____
A: 6
B: 10
C: 16
D: 20
参考答案: A
本题解释:参考答案:A
题目详解:28幅不是五年级的,也就是六年级+其他年级=28幅;24幅不是六年级的,也就是五年级+其他年级=24幅;上述两个式子相加得:(五年级+六年级)
3、单选题 小明和小强从400米环形跑道的同一点出发,背向而行。当他们第一次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向。小明每秒跑3米,小强每秒跑5米,则在两人第30次相遇时。小明共跑了多少米? _____
A: 11250
B: 13550
C: 10050
D: 12220
参考答案: A
本题解释:A。两人相向运动,经过400÷(3+5)=50秒相遇,之后小明转身,两人做追及运动,经过400÷(5-2)=200秒第二次相遇;接着两人又做相向运动,经过50秒相遇,再做追及运动,经过200秒相遇,以此类推,第30次相遇共用30÷2×(50+200)=3750秒,则小明共跑了3×3750=11250米。
4、单选题 从某车站以加速度为
A: 9
B: 3
C: 5
D: 6
参考答案: D
本题解释:参考答案D
题目详解:确定甲列车在行驶9分钟之后的终速度:对于匀变速而言,终速度=初始速度+加速度×时间,初始速度为0m/s,故甲列车在行驶9分钟之后的速度为:0+1/18×540=30m/s(注意单位统一);求距离最近的时间:设速度相等时乙列车运行时间为t秒,根据终速度=初始速度+加速度×时间,初始速度为0m/s,则50=0+1/18×(9×60+t),解得t=360秒,即6分钟。所以,选D,考查点:数量关系>数学运算>行程问题>追及问题>直线追及问题>直线多次追及问题
5、单选题 女儿2013年时的年龄是母亲年龄的1/4,40年后女儿的年龄是母亲年龄的2/3。问当女儿年龄是母亲年龄的1/2时是公元多少年?_____
A: 2021
B: 2022
C: 2026
D: 2029
参考答案: D
本题解释:【答案】D。