1、单选题 某班有50名学生,在第一次测验中有26人得满分,在第二次测验中有21人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?_____
A: 13
B: 14
C: 17
D: 20
参考答案: B
本题解释:正确答案是B考点容斥原理问题解析本题注意按照得满分得到两个类,进行容斥原理分析。设第一次测验得满分为事件A,第二次测验得满分为事件B,则两次都得满分为A∩B,将其设为x人,得过满分为A∪B。根据公式A∪B=A+B-A∩B可得:50-17=26+21-x解得x=14,因此两次测验中都获得满分的人数是14人,故正确答案为B。标签两集合容斥原理公式
2、单选题 河流赛道长120米,水流速度2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?_____
A: 48
B: 50
C: 52
D: 54
参考答案: C
本题解释:正确答案是C考点行程问题解析由于水速为2米/秒,所以顺行时候甲船速度是8米/秒,乙船速度是6米/秒。逆行时候甲船速度是4米/秒,乙船速度是2米/秒。甲乙的两次相遇分别在甲船第一次返回和甲船第二次顺行途中,甲第一次返回原地花费时间为120/8+120/4=45秒,此时乙到达对岸,逆水往回走,两船距离120-(4-2)×(45-120/6)=70米,再次相遇需要的时间为70÷(8+2)=7。所以总时间为45+7=52秒。故正确答案为C。
3、单选题 254个志愿者来自不同的单位,任意两个单位的志愿者人数之和不少于20人,且任意两个单位志愿者的人数不同,问这些志愿者所属的单位数最多有几个?_____
B: 1
C: 2
D: 3
参考答案: B
本题解释:正确答案是C考点趣味数学问题解析设A<B<C<D<E,则必有A+B=17,A+C=25,C+E=42,D+E=45。两两相加,应该有10个数值,因此必有两个重复值。这10个数值相加,必为4的倍数,将题中8个数值相加得261,除以4余1,因此另外两个加和必然除以4余3,重复的两个数在28、31、34、39中,因此这两个数为28、39或28、31,28必为重复值,可知B+C=A+D=28,所以,A=7,B=10,C=18,D=21,E=24,能被6整除的有18、24两个。故正确答案为C。<p>
4、单选题 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7
B: 9
C: 10
D: 12
参考答案: C
本题解释:正确答案是C考点排列组合问题解析
5、单选题 一只猎豹锁定了距离自己200米远的一只羚羊,以108千米/小时的速度发起进攻,2秒钟后,羚羊意识到危险,以72千米/小时的速度快速逃命。问猎豹捕捉到羚羊时,羚羊跑了多少路程?_____
A: 520米
B: 360米
C: 280米
D: 240米
参考答案: C
本题解释:正确答案是C考点行程问题解析猎豹的速度为108千米/小时,即30m/s,当羚羊意识到危险时,二者距离为200-30×2=140m,而羚羊的速度为72千米/小时,即20m/s;这是一个运动追及问题,故可得140÷(30-20)=14s,即羚羊从开始跑到被追上一共用了14s,共跑了20×14=280m。故正确答案为C。