1、单选题 学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中至少有多少名学生是同年同月出生的?_____
B: 1
C: 2
D: 3
参考答案: C
本题解释:参考答案:C
题目详解:解法一:把同年同月的放在一组里面,那么每一组可以作为1个“抽屉”;因此,可以构成3×12=36个“抽屉”,40÷36=1…4;由抽屉原理1可以得到,至少有2名学生是同年同月出生的。解法二:这40名同学的年龄最多相差36个月(三年),因40=1×36+4,故必有2人是同年、同月出生的。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
2、单选题 一把钥匙只能开一把锁,现在有10把锁和其中的8把钥匙,请问至多需要试验多少次,才能够保证一定将这8把钥匙都配上锁?_____
A: 52
B: 44
C: 18
D: 8
参考答案: B
本题解释:参考答案:B
题目详解:第1把钥匙最多试9次,能够将这把钥匙配上锁;第2把钥匙最多试8次,能够将这把钥匙配上锁;……;第8把钥匙最多试2次,能够将这把钥匙配上锁。因此,最多需要试验9+8+…+2=44次,才能够保证一定将8把钥匙都配上锁。所以,选B。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
3、单选题 某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果。现将苹果个数相同的箱子算作一类。设其中箱子数最多的一类有
A: 4
B: 5
C: 6
D: 7
参考答案: C
本题解释:参考答案:C
题目详解:解法一:将苹果个数相同的箱子算成一类,那么每一类都可以看成一个“抽屉”。这样可以构造出144-120+1=25个抽屉,又由于:126÷25=5…1,由抽屉原理2可以得到,
4、单选题 有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天
B: 8天
C: 9天
D: 10天
参考答案: A
本题解释:参考答案:A
题目详解:每天审核的课题应尽可能少,才能增加审核天数。假设第1天审核1个,则第2天最少审核2个,……依此类推,则审核完这些课题天数最多的方案应为每天审核1,2,3,4,5,6,9或1,2,3,4,5,7,8。显然所需天数都为7天。所以,选A。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
5、单选题 有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?_____
A: 12
B: 15
C: 14
D: 13
参考答案: C
本题解释:参考答案:C
题目详解:将这20个数字分别列为如下:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13。考虑最差情况,就是前面抽出13个数字就是1-13,然后取第14个数字的时候不管取什么,肯定是14-20中的一个,与前面的数字相减必然能等于13。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1