1、单选题 赵先生34岁,钱女士30岁,一天,他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说:他们三人的年龄各不相同,三人的年龄之积是2450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁?_____
A: 42
B: 45
C: 49
D: 50
参考答案: C
本题解释:正确答案是C考点年龄问题解析三个人的年龄之积为2450,对2450做因式分解得2450=2×5×5×7×7,三个人的年龄之和为64。所以试着把5个因数组合成3个不同的整数,使他们的和为64。可知5、10、49符合要求,5+10+49=64,故三个邻居中年龄最大是49岁。故正确答案为C。标签构造调整
2、单选题 小王从家开车上班,其实行驶10分钟后发生了故障,小王从后备箱中取出自行车继续赶路,由于自行车的车速只有汽车的3/5,小王比预计时间晚了20分钟到达单位,如果之前汽车再多行驶6公里,他就能少迟到10分钟,从小王家到单位的距离是_____公里。
A: 12
B: 14
C: 15
D: 16
参考答案: D
本题解释:正确答案是D考点行程问题解析由题意可知,汽车和自行车的速度之比为5:3,因此相同路程下汽车和自行车的用时之比为3:5。迟到20分钟,则余下的路程汽车30分钟,自行车50分钟,所以总路程开车需40分钟;迟到10分钟,则余下的路程汽车15分钟,自行车25分钟,后面一种情况比前面一种汽车多开了15分钟,行驶了6公里,因此全程的距离为6÷15×40=16公里,故正确答案为D。标签比例转化
3、单选题 某工厂的一个生产小组,当每个工人都在岗位工作时,9小时可以完成一项生产任务。如果交换工人甲和乙的岗位,其他人不变,可提前1小时完成任务;如果交换工人丙和丁的岗位,其他人不变,也可提前1小时完成任务。如果同时交换甲和乙、丙和丁的岗位,其他人不变,可以提前多少小时完成这项任务?_____
A: 1.4
B: 1.8
C: 2.2
D: 2.6
参考答案: B
本题解释:正确答案是B考点工程问题解析交换甲和乙或丙和丁的工作岗位,均可8小时完成任务,说明交换甲和乙或丙和丁,整体工作效率由1/9变为1/8,提高了1/72。则同时交换甲乙、丙丁,整体效率提高了1/36,则效率由1/9变成1/9+1/36=5/36,于是完成用时36/5=7.2(小时),提前了1.8小时完成。故正确答案为B。
4、单选题 有1角、2角、5角和1元的纸币各1张,现在从中抽取至少1张,问可以组成不同的几种币值?_____
A: 18种
B: 17种
C: 16种
D: 15种
参考答案: D
本题解释:正确答案是D考点排列组合问题解析
5、单选题 有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有_____块。
A: 180
B: 196
C: 210
D: 220
参考答案: D
本题解释:正确答案是D考点数列问题解析由瓷砖总数为400块,可知该正方形边长为20块瓷砖,每往里一层,边长减少2块瓷砖,由此可知每往里一层绿色瓷砖,边长减少4块瓷砖。因此绿色瓷砖共5层,最外层一圈为76块砖,最里一层一圈为12块砖,总数为(76+12)÷2×5=220块。故正确答案为D。注:等差数列求和公式,和=(首项+末项)×项数÷2标签公式应用