1、单选题 卫育路小学图书馆一个书架分上、下两层,一共有245本书。上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多。那么,上、下两层原来各有图书多少本?_____
A: 108,137
B: 130,115
C: 134,111
D: 122,123
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析上层比下层多(15-10)×3=15本书,而两层共有245本书,故上层130本,下层115本。因此正确答案为B。
2、单选题 某商场举办羽绒服专卖会,一件羽绒服连续两次8折降价销售(即连续2次降价20%),降价后的价格为320元,问原价是多少?_____
A: 500
B: 450
C: 400
D: 600
参考答案: A
本题解释:正确答案是A考点经济利润问题解析设原价为A元,连续两次降价20%后为0.8×0.8A=320,计算时采用分步计算而不计算0.8×0.8,易得A=500,故正确答案为A。
3、单选题 某彩票设有一等奖和二等奖,其玩法为从10个数字钟选出4个,如果当期开奖的4个数字组合与所选数字有3个相同则为二等奖,奖金为投注金额的3倍,4个数字完全相同则为一等奖,为了保证彩票理论中奖金额与投注金额之比符合国家50%的规定,则一等奖的奖金应为二等奖的多少倍?_____
A: 8
B: 9
C: 10
D: 11
参考答案: D
本题解释:正确答案是D考点概率问题解析
4、单选题 自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100<P<1000,则这样的P有几个?_____
A: 不存在
B: 1个
C: 2个
D: 3个
参考答案: C
本题解释:正确答案是C解析由"
除以10的余数为9,P除以9的余数为8,P除以8的余数为7",满足差同减差,对应口诀可知其符合表达式为360n-1,由于100<P<1000,则100<360n-1<1000,所以n能取1、2,则满足条件的P有两个,即359和719,故正确答案为C。注释:同余问题需要掌握如下口诀:余同取余,和同加和,差同加差,最小公倍数做周期。口诀解释:余同取余,例如"一个数除以7余1,除以6余1,除以5余1",可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如"一个数除以7余1,除以6余2,除以5余3",可见除数与余的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如"一个数除以7余3,除以6余2,除以5余1",可见除数与余的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。余数与同余问题标签同余问题
5、单选题 一个数列为1,-1,2,-2,-1,1,-2,2,1,-1,2,-2…….则该数列的第2009项为_____。
A: -2
B: -1
C: 1
D: 2
参考答案: C
本题解释:正确答案是C考点周期问题解析该数列是一个周期数列,发现数字1、-1、2、-2、-1、1、-2、2重复出现,循环周期为8。而2009÷8余数是1,则第2009项为1。故正确答案为C。